

Contents Grade 2 Book 1

No.	Title	Workbook	Guide	23b	Subtraction	48	47	42a	More subtraction	88	87
		Pg	Pg	24	Some more addition	50	49	42b	Even more subtraction	90	89
I	Me and my family	2	I	25	Money	52	51	43	Heavy and light	92	91
2	Counting	4	3	26	Note money	54	53	44	Number patterns: twos	94	93
3	Numbers	6	5	27	Patterns	56	55	45	Double	96	95
4	More numbers	8	7	28	More patterns	58	57	46	Double again	98	97
5	Addition and subtraction	10	9	29	Multiplication: $\times 2$	60	59	47	Double up	100	99
6	Sharing and money	12	II	30	Multiplication: $\times 5$	62	61	48	More doubling	102	IOI
7	Patterns	14	13	31	Multiplication stories	64	63	49	Containers and capacity	104	103
8	Shapes	16	15	32	Three-dimensional objects	66	65	50	Multiplication: $\times 3$	106	105
9	Balls and boxes	18	17	33	Order and compare numbers:	68	67	51	Number patterns: threes	108	107
10	Length	20	19		$1-40$			52	Multiplication: $\times 4$	110	109
II	Mass	22	21	34	Order and compare numbers:	70	69	53	Number patterns: fours	II2	III
12	Capacity	24	23					54	More multiplication stories	114	113
13	Time	26	25	35	Numbers 40-50	72	71	55	Hours	116	115
$\frac{14}{15}$	Birthday Calendar	28	27	36	Squares, rectangles, triangles and circles	74	73	56	Number patterns: fives	118	117
15	Collect and sort	30	29					57a	Minutes	120	119
16	Read and interpret	32	31	37	Addition and subtraction up to 20	76	75	57b	More minutes	122	I21
17	Before, after and between	34	33	38	Addition and subtraction up to	78	77	58	Grouping and sharing	124	123
18	Numbers I-30	36	35					59	More grouping and sharing	126	125
19	Number lines	38	37	$39 a$	More addition	80	79	60	Yet more grouping and sharing	128	127
20	More number lines	40	39	39 b	More addition (continued)	82	81	61	Grouping and sharing again	130	129
21	Addition and subtraction	42	41	40	Length	84	83	62	Halves: $1-20$	132	I31
22	Days, weeks and months	44	43	41	Subtraction	86	85	63	Sharing 20-50	134	133
23a	Addition	46	45					64	Data	136	135

Contents Grade 2 Book 2

Introduction to the workbooks

What are the workbooks?

The national Department of Basic Education is providing workbooks to every child in a public school in a number of subjects including mathematics. These workbooks are to be provided free of charge to every child.

Each and every child should have their own workbook. They should be allowed to take them home and they can (and indeed must) write in them.

These workbooks will help teachers to manage their teaching time and monitor the progress and performance of their learners.

The two books for Mathematics Grade 2 are available in all the official languages.

The workbooks have been designed to be fully compliant with the National Curriculum Statement (NCS) and the Curriculum and Assessment Policy Statements (CAPS).

What is the place of these worksheets in teaching?

It is important to see what place the worksheets can play in your teaching of Grade 2 mathematics. They are not a substitute for your teaching the concepts and procedures of mathematics. The worksheets are a help in the practical work you give the learners to do. There are three very important components in every teaching interaction:

Firstly, it is important to have a knowledgeable teacher who is familiar with the content knowledge being taught.

Secondly, it is necessary for the knowledgeable teacher to communicate this knowledge so that the learners do not just memorise facts or formulae. Provide concrete (hands on) activities and semi-abstract activities such as making drawings. Good teaching requires an understanding of what the learners already know, building on it, and the skill to communicate in a way that the learners can understand easily, but still be kept interested and challenged.

Thirdly, for learning to be retained, learners must make it their own, and this requires immediate practice. It is this component the worksheets are designed for - to help the learners make the new knowledge and skills their own. The worksheets provide a well designed and sequenced set of practical exercises for the learners to use under your guidance. They will save you a lot of time(and money) having to write exercises on the board or photocopying your own worksheets.

The structure of the worksheets

The structure of the Teacher Guide

More notes on the structure of the Teacher Guide pages

Content link

The content link refers to the main concepts that we are dealing with in the Foundation Phase. For example, if we are describing how to measure a flat surface, the content link will be other worksheets dealing with measurement of area and volume of shapes and objects.

Resources

Note that sometimes you need additional resources and this needs careful preparation. E.g. if you need to use Cut-outs or any other resources, you have to ask yourself: "Do I have the resources in my class? Can I make it from recyclables? Can I ask the children to bring things from home?" Making sure you have the resources ready is in addition to the normal preparation that you need to make before any lesson. You should always have read the worksheet and worked through it yourself before using it.

Introduction

The introduction links to the Introduction in the worksheet in the learner's book. This could be:

- A fun activity to get the learner's attention
- A problem activity to get the learner involved and thinking
- A revision activity on some important concepts needed to further develop the concept in this lesson

Oral questions

These are questions you can pose for learners after they have been doing a question or two in their workbooks to check their understanding.

Homework

Possible homework questions are highlighted for you. You should always check this homework before, or at the start of, the next day's lesson. Note that you don't always have to mark the learners' homework. Learners can also mark each others' homework.

Reflection

These are the questions that you need to ask yourself after the lesson. If you cannot answer "Yes" to all of them you should plan to revise or cover those concepts again in the next lesson.

Common Errors

We can improve our teaching and learners' learning if we know what kind of mistakes are being made. You should keep a journal of common errors and how you can correct them. E.g. If you ask the learner "What is $7+6$?" and he or she answers " 12 ", don't just say "WRONG". Ask the learner: "How did you get the answer?" The learner might say I counted forwards: 7, 8, 9, 10, 11, 12. You can then quickly see that the child started to count from 7 and not 8. Only through identifying the cause of the problem can you correct it.

The concrete-to-representational-to-abstract sequence

What is the purpose of the "Concrete-to-representational-toabstract" (CRA) sequence?

The purpose of teaching through a concrete-to-representational-toabstract sequence of instruction is to ensure learners have a thorough understanding of the mathematical concepts and skills while they are learning.

What is this sequence?

Concrete leve

The concrete level of understanding is the most basic level of mathematical understanding. This level is the crucial beginning for the development of conceptual understanding of mathematics.

Each mathematical skill and knowledge is first modelled with concrete materials. Children should be provided with many opportunities to practice and master mathematical skills and knowledge using concrete materials.

Concrete level learning occurs when children have opportunities to manipulate concrete objects to solve problems.

The concrete objects you use in a classroom lesson can include everyday objects (beans, sticks, matches, popsicle sticks or stones) or specially made objects (sometimes called manipulatives) designed so that a
child can learn some mathematical concepts by actually handling it. The experience of using these concrete objects provides a way for children to learn concepts such as addition, subtraction, multiplication and division in a developmentally appropriate, hands-on way. Examples of specially made manipulatives are: counters, interlocking cubes, Cuisenaire rods, colour tiles, pattern blocks, base-ten blocks and rods, fraction strips, tangrams and geoboards.

There are two types of concrete objects we can use:

- Discrete concrete materials are those that are individual, distinct objects that can be counted.
- Continuous concrete materials are used in measurement, e.g. scales, rulers, measuring cups, trundle wheels.

Discrete materials

Discrete materials can be easily manipulated through sight and touch.
Children first need a lot of experience with discrete materials before they will benefit from using continuous materials.

Continuous materials

There are concrete objects that can be used to do continuous measurements of other objects, such as scales, rulers and measuring cups, and clocks.

Digital bathroom scale	Analogue bathroom scale	Digital kitchen scale	Ruler	Measuring cups	Trundle wheel

There are some manipulatives that can be used to teach place value. Base ten blocks are a good example. They consist of cubes (for units), rods (for tens), flats (for hundreds) and blocks (for thousands). Their actual size is proportional, so a rod is ten times bigger than a cube. Other forms are blocks that can be linked together to make objects of the required size.

You can make home-made equivalents by taking single units (such as popsicle sticks) and bundling ten together with string or an elastic band to make a ten.

Non-proportional objects include such things as play money where the size is not indicative of the value while the other characteristics such as colour indicate value.

The workbooks provide learners with many opportunities to practice and demonstrate mastery using concrete materials. Your task as a teacher is to make sure they have these items. Some of the Workbook Cut-outs provide such items.

Representational level

At the representational level of understanding children use or draw pictures of concrete objects when solving problems. As soon as children have mastered a particular mathematical concept or skill at the concrete level they should move to the representational level. When children draw solutions, children are crossing an intermediate step where they begin to transfer their concrete understanding toward an abstract level of understanding.

The representational level includes the semi-concrete and semi-abstract levels. The semi-concrete involves the representation of actual numbers with things such as dominoes, pictures on cards, dice, etc. and the semiabstract involve drawing pictures that represent the concrete objects previously used. This includes the semi-concrete and semi-abstract levels.

The semi-concrete involves the representation of actual numbers with things such as dominoes, pictures on cards, dice, etc. Some cut-outs enable objects such as dice to be made.

The semi-abstract involves drawing pictures that represent the concrete objects previously used.

The workbooks have a large number of pictures that the learners can use to solve problems.

Abstract level

After the learners have mastered the two previous levels they can move to the abstract level, using only numbers and mathematical symbols.

The child no longer uses concrete objects or drawings to solve problems.

When children solve problems using paper and pencil only, it is a common example of abstract level problem solving. Abstract understanding also enables us to do mental mathematics - 'doing maths in your head'.

Many opportunities in the workbooks are given on the abstract level to demonstrate and practice the concept before moving on to the next concept.

What if a child cannot solve problems at an abstract level?

We have these suggestions for you if a child is not successful at solving problems at an abstract level. Provide remedial instruction on the concept or skill at the:

- concrete level using appropriate concrete objects.
- representational level and provide opportunities for the child to practice by drawing solutions.
- abstract level giving the children the opportunity to explain their solutions and how they got them.

Mental mathematics

Mental mathematics is using knowledge of the basic mathematical facts to perform mental, as opposed to pen and paper, calculations. Mental maths calculations are done in one's head instead of using pencil and paper, calculators or other aids.

Do the workbooks have mental maths exercises?

No. The worksheets do not include mental maths exercises.

Why is this?

The reason is simple. The worksheets are pencil and paper exercises. They are often more complicated than mental maths exercises (and it would take a teacher a lot of time to design such exercises). By comparison mental

7×5 $=$?

 bonds, knowledge of multiplication tables, and basic maths facts.

This is not to say that the lesson the teacher plans which includes the use of a worksheet should not include mental maths exercises (often at the beginning of a lesson as a way of 'warming up').

Also, mental maths skills will aid the learners as they do the worksheet.

What is mental mathematics?

Mental mathematics is using knowledge of the basic mathematics facts to perform mental calculations rather than using pen and paper or aids such as calculators or computers.

We use mental maths as a way to calculate (give exact answers) and estimate (give approximate answers) quickly, using the maths facts that we have committed to memory. These maths facts include such things as the rules of multiplication, division, etc. and bonds and times tables.

To use mental maths means being able to give an answer to a maths question after only thinking about it, rather than doing calculations on paper. Even if the calculation is such that one does need to use pen and paper (or a calculator), mental maths enables one to quickly judge the reasonableness of the answer so obtained.

For success in mental maths a learner needs a good number sense as he or she has to make sense of number combinations while going through the process of learning the basic mathematical facts. A mental mathematical calculation requires the learner to use a combination of maths factual knowledge and number sense.

An expanded conception of mental maths skills includes being able to truly understand maths concepts and solve problems in a logical, methodical way.

How does one learn to do mental maths?

Traditionally, training in doing mental calculations relied very heavily on 'learning by heart' such things as bonds and times tables, though this has limitations in developing true number sense, as people can mechanically memorise things they do not understand. However, it is still important that learners do know their bonds and times tables.

A number of well known mathematics programmes have their own special mental mathematics teaching methods.

To become competent in mental maths one first has to learn the 100 or so number facts relating to the single digits 0 to 9 for each of the four operations.

When the learners have memorised and know these facts, they can quickly retrieve them from memory, they have instant recall. Through practice over time the learner will achieve automaticity. He or she will no longer have to work out a strategy in their head on how to answer the problem.

So good teachers should be developing the "mental maths" skills wherever and whenever appropriate. Mental mathematics is a necessary part of what a knowledgeable maths learner does. Fluency in the 'language' of numbers and the use of that 'language' does require some degree of automacity (which would obviously include thorough memorisation of bonds and multiplication tables as well as a basic conceptual understanding of the four operations.)
[Becoming a good reader requires a similar development of automaticity the beginning reader moves from sounding out words to reading instantly.]

What are the basic mathematical facts?

Number work	Comparing and ordering numbers
	Counting on
	Counting back
Addition	Number bonds
	Adding zero
	Number families
	Building up and breaking down numbers
	Doubling in addition
	Near doubles
	Filling up the tens
	Compensation
	Commutative property of addition
Subtraction	Taking away
	Halving in subtraction
	Doubling in subtraction
	Subtraction as the inverse operation of addition.

Multiplication	Skip counting (multiples)
	Multiplication by zero
	Multiplication tables
	Equal groups
	Repeated addition
	Commutative property of multiplication
	Place-value-change strategy for multiplying by 10, 100, 1000
Division	Sharing leading to division
	Grouping leading to division
	Halving in division

Teaching mental maths

A maths teacher needs to incorporate some aspect of mental maths in nearly every lesson. The actual time spent may often be very short - five minutes a day - though some lessons may focus more directly on mental maths.

To do mental maths learners need to know the number facts relating to the digits 0 to 9. Initially this involves learning and practice. With time the learner will be able to recall and use these facts automatically.

In the early years of mental maths development it is important to give the children short tests, mark them, and give the children feedback.

Mental maths tests can be oral or pencil and paper or you can have a combination of written and oral answers. Oral answers and explaining how they got the answer will be more valuable to you as teacher and the learners because they will hear and share different strategies.

When you for example ask "What is 7 times 5 ? " also ask what " 7 times 5 " means. They might answer " 7 groups of 5 ". Then continue: "If 7 groups of 5 equals 35 , how much will 8 groups of 5 be?" " 6 groups of 5 ?", etc. Ask the children that gave the correct answer: "How did you get the answer?" and then ask the learners that got it incorrect: "How did you get the answer?"

Through their explanation not only can you assess them but the rest of the class also learn from them. You will notice that children will use a variety of strategies to calculate. The child that answered it incorrectly might correct him or herself when explaining how she or he got the answer or you as teacher can guide the child while giving feedback to the correct answer.

Help your learner to think mathematically using the workbooks

There are three kinds of knowledge: physical, social and conceptual knowledge.

Physical knowledge

Learners gain physical knowledge through touching, using, playing with, and acting on concrete/physical material. Learners need a lot of concrete experiences in the mathematics classroom to develop their physical knowledge of numbers and number patterns.

The workbooks provide a variety of ideas and pictures on how to use concrete resources. At the back of each workbook we include cut-outs that encourage the use of resources.

Teachers need to consider which concrete resources should go with each worksheet. The Resources block gives some suggestions. Find out if your school has these resources or whether you can make them yourself.

Social knowledge

Social knowledge is the words and conventions we need to know and remember if we are to be able to communicate with and interact with other people. For example, we need to be on time at school. It is a convention, it is a decision we have taken and all agree to. Below are examples of some mathematics conventions that we will find throughout the workbooks:

- The way in which we write a number sentence.
- The way in which we write a number symbol.
- The way in which we use the equal sign to show equivalence.

We have agreed to use these conventions so that we can communicate mathematically with others. The teacher must help learners to put what they have learned in words or writing to explain it to the others.

Conceptual knowledge

When learners see relationships, patterns, regularities and irregularities when doing activities, they are constructing conceptual knowledge. A concept is a general idea we hold in our minds that helps us to understand real individual things in the world. We build up conceptual knowledge based on our experience.

What is your role as a teacher in developing conceptual knowledge when using the workbooks?
You should use the worksheets to assist the learners to build up their understanding of mathematics and to see the patterns in numbers. Encourage your learners to reflect on what they are doing and thinking when completing a worksheet.

You can ask them questions like:

- How did you get this answer?
- What did you do to complete this task?
- What is another way to solve this problem?
- Can you compare your thinking or solutions with your partner's?
- How can you show your thinking using, drawings, concrete resources, numbers and words?

1 Me and my family

Objectives

- Draw pictures of your family
- Collect personal data
- Write whole numbers

Resources

Teacher: Writing board
Learner: Make use of available concrete apparatus. Here are a few examples of objects that can be used:

beads	counters	stones	unifix cubes

Dictionary

Numbers: A number is a count. Numbers are ideas in our minds that we use for counting things in our

environment. We write and talk about numbers using
" 5 " or "five". We can also hold up 5 fingers or stamp our feet five times.

Note: These dictionary entries are for your own information. You do not have to teach them to your learners. Learners need to understand the concepts.

Teach whole numbers

Learners need concrete objects and apparatus in the early years to make sense of mathematical concepts. Use concrete materials to help the learners to construct their own knowledge and understanding.

Representational

Draw your house number, e.g. If it is 12 .
0000000000
00
Note: Encourage learners to
draw numbers in groups of ten.

Concrete

Mother is 32 years old. Show it with the beads/counters. e.g.

Abstract

Ask the learners to go to page 2 of the workbook. Read the introduction at the top. Write the numbers on the board. Ask them what they mean.
$\begin{array}{llll}8 & 12 \quad 2 & 32\end{array}$

1 Me and my family continued

Learners must fill in the answers to the questions about their
family. You need to help the learners question by question. e.g.

Read:

"I am __ years old." Learners can show their age with counters.
"Two years ago I was __ years old." Do I need to add or take counters away? How many? Do it.
"In one year I will be __ years old." Do I need to add or take counters away? How many? Do it.

Answers: Learner's own answers.

Leat Learners must draw a picture of their family.
 Answer: Learner's own drawing.

Write
Learners must trace the numbers 1 to 9 using the dot
patterns.

Homework

The first sixteen worksheets (1 to 16) mainly provide homework exercises on the building up and breaking down of numbers up to 10 .

Reflection questions

Can learners do the following?

- Answer "number" questions
- Draw a picture of their family
- Collect personal information

Oral question

Write your age with your finger in the air.

2 Counting

Objectives

- Counts objects from 1 to 40

Resources

Teacher: Writing board
Learner: Workbook page 4, pencil and colouring pencils
Concrete resources:

beads	counters	stones	unifix cubes

Dictionary

Counting number: any number you can use for counting things: 1, 2, 3,
4, 5,
It does not include zero, negative numbers, fractions and decimals.
Counting in groups: From an early age learners should learn to count in groups, e.g. groups of 2.

Teach numbers from 0 to 40

Introduce each lesson going through the different levels of maths development: concrete - body, concrete, representational (semiabstract), and abstract.

Concrete

Count your eyes, fingers and toes.
Count your friend's eyes, fingers,
toes. How many fingers do the two
of you have altogether?

Representational

Draw this on the board.
How many patches do you count?

Concrete

Count the beads.
: $\because: 8: \%$ Count the counters. Count the counters.

Abstract

Write a number on the board.
What is the number?

$9 \quad 14 \quad 239$

2 Counting continued

Introduction

Learners must look at the picture on page 4. How many eyes, dots and patches do you count? What else can you count?

Oral questions

- How many eyes do I have?
- How many eyes will 2, 3, 4, 5 teachers have?
- Let us count in $2 \mathrm{~s}: 2,4,6, \ldots 40$.
- How many fingers do I have on one hand? Two hands?
- Let us count in 5s: 5, 10, 15, ... 40.

Draw three squares on the board.

Ask: "How many squares do you count?" Draw another three. "How many do you count now?"

Let us count in 3s: 3, 6, 9, ... 40.
Learners must fill in the empty spaces.

Do the first part of the question with the learners. Let them outline the answer given. Ask the learners to do the rest of the questions. Answers:
1 Girl: 2 eyes, 10 dots, 3 patches
2 Girls: 4 eyes, 20 dots, 6 patches 3 Girls: 6 eyes, 30 dots, 9 patches 4 Girls: 8 eyes, 40 dots, 12 patches

Share the dots and patches equally. Answers: Each girl gets 6 dots and 3 patches

Write
Learners must trace the numbers 1 to 9 using the dot patterns.

Homework

Building up and breaking down numbers that will give you a total of 3 and 4 . Eg: $1+2=3,1+3=4,2+2=4$.

Renlection questions

Can learners do the following?

- Use their body to count
- Use concrete objects (beads, counters, stones) to count
- Make a drawing when counting
- Use numbers to count
- Count in groups of 2,3 and 5

Objectives

- Count objects from 1 to 100
- Recognise and write number names from 0 to 20
- Recognise and write names from 0 to 20

Resources

Teacher: Chalk and writing board, counters, beads
Learner: Workbook page 6, pencil, crayons and paper
Concrete resources:

beads	counters	stones	unifix cubes

Dictionary

Number symbol: symbol that stands for a number, e.g. 1, 2, 3, 14, 16 and 20

Number names: word for a number, e.g. one, two, three, fourteen, sixteen and twenty

Teach numbers

Learners must write the numbers in words

Answers

6-six	$12-$ twelve	Note:
$4-$ four	$17-$ seventeen	Challenge
8 - eight	$14-$ fourteen	learners
$1-$ one	$22-$ twenty-two	sometimes by
$2-$ two	$18-$ eighteen	giving them a
$5-$ five	$11-$ eleven	number bigger
$0-$ zero	$20-$ twenty	than 20.
$10-$ ten	$15-$ fifteen	
$3-$ three	$13-$ thirteen	
$9-$ nine	$16-$ sixteen	

Write

Learners must trace the number pattern.

Homework

Building up and breaking down numbers that will give you a total of 5 and 6. Eg: $1+4=5,2+3=5,1+5=6,2+4=6,3+3=6$.

Reflection questions

Can learners do the following?

- Recognise and write number symbols from 0-20
- Use each of the following to count: their body, counters, beads, unifix, cubes and stones; a drawing; numbers

4 More numbers

Objectives

- Counts objects from 0-20
- Represent even numbers
- Represent odd numbers
- Add numbers from 0-20

Resources

Teacher: Writing board, counters, sticky red and blue dots Learner: Workbook page 8, pencil
Concrete resources: Beads,
counters, stones, unifix cubes

Dictionary

Even number: a number that is divisible by two. e.g. 2, 4, 6, 8 ..
Odd number: a number that is not divisible by 2. e.g. $1,3,5,7 \ldots$

Teach numbers

Concrete - body

Put blue dots on every second
finger, alternating with red dots. Ask
the learners: Which fingers have
blue dots? Which have red dots?

Representational

Teacher says: Draw an orange circle, then a green circle, then orange, green, orange, green. What do you notice?

Concrete

(Ask the learners to lay out the counters.)
What do you see?

Abstract

Write on the board.
$1,2,3,4,5,6,7,8,9,10,11,12,13$, $14,15,16,17,18,19,20$ Circle every second number.

Introduce the Addition section, going through ...	
Concrete - body Ask one child to show 10 fingers and another to show 4 fingers. How many fingers do you count? Concrete Ask the child to lay out 10 beads, stones, counters. Add another 2. How many do you have now? Do the same with numbers 11-19.	
Representational Draw 10 counters. Add 4. How many do you have?	Abstract Write on the board. $10+3=-10+5=-$ $10+9=-\quad 10+7=-$

Learners must calculate the sums.
 Answer:
 $11,18,15 \quad 19,12,14 \quad 16,13,17$

If learners find it difficult give them number cards to help them.

Write:
Learners must trace the number pattern.

Homework

Building up and breaking down numbers that will give you a total of 5,6 and 7. Eg: $1+4=5,2+3=5,1+5=6,2+4=6,3+3=6,1+6=7,2+5$ $=7,3+4=7$.

Reflection questions

Can learners do the following?

- Count objects from 0-20
- Represent even numbers from 0-20
- Represent odd numbers from 0-20
- Add numbers from 0-20

Objectives

- Add numbers from 0-20
- Subtract numbers from 0-20

Resources

Teacher: Writing board, counters
Learner: Workbook page 10, pencil and
colouring pencils
Concrete resources: Beads, counters, stones, unifix cubes

Go to page 10 in the workbook.

Learners must add and subtract using pictures. They must write a sum for each picture.
Answer: 18 - $8=10,12+5=17,8+6=14,8+3=11$
Learners must calculate the sums.
Answers: 11, 15, 10, 17, 11, 12, 14, 4, 4, 7, 7, 2
Note what learners use to get the answer. Fingers? Concrete resources? Drawing? In their heads?

Oral questions

What is $12+4$? 19-5?
Ask a few questions like this to see if learners understand. Note again whether they use their fingers, concrete resources or drawings or do it in their heads,

Concrete-body

With a friend.

- What is 7 fingers plus 6 fingers?
- What is 12 fingers minus 3 fingers?

Representational

Draw 8 flowers. Draw another 6.
How many do you have now?
Do the same for subtraction.
14-6 =

Concrete

Lay out 15 counters. Add 4. How many counters do you have now? Do the same for subtraction.19-4 =

Abstract

Write on the board.
$6+5=$ \qquad 12-6 =
$8-4=-\quad 11+3=$ \qquad
Ask the learners for the answers.

Write:

Learners must trace the numbers.

	Teach repeated addition.	
	Concrete - body Ask 6 children to stand in front of the class. One lifts up her/his hand. Ask "How many fingers do you count?" She/he lifts up both hands. Carry on like this.	Concrete Ask learners to put two red counters on their desk Put another two (blue). Put another two (green) Put another two (yellow). How many counters do you have altogether?
	Representational	Abstract
	Draw this on the board.	Write on the board.
	00	$2+2+2+2=$
	Learners must copy it. "How many counters do	$3+3+3=$
	you see? Let us count: 3, 6, 9. Let's make a sum." $3+3+3=9$	Ask learners what the answers are.

 Learners must use the picture to write a sum.
 Answers: 3 + 3 + 3 = 9 Child draws 9 pears $4+4+4+4=16$ Child draws 16 strawberries $2+2+2+2+2=10$ Child draws 10 pineapples $5+5=10$ Child draws 10 oranges

Oral questions

What is $2+2+2+2=? 4+4+4=? 3+3+3+3=$?

Learners must use repeated addition to calculate the sums. Answer: 6, 8, 15, 6, 12, 10, 8, 16, 3

Write:

Learners must trace the numbers.

Homework

Building up and breaking down numbers that will give you a total of 7 and 8. Eg: $1+7=8,2+5=7,3+4=7,1+7=8,2+6=8,3+5=8,4+4=8$.

Reflection questions

Can learners do the following?

- Add numbers from 0-20
- Subtract numbers from 0-20

Sharing and money

Objectives

- Share items or numbers from 0-20
- Recognise coins and bank notes
- Identify coins and bank notes

Resources

Teacher: Writing board, counters,
sweets, real money
Learner: Workbook page 12, pencil and colouring pencils
Concrete resources: Beads, counters, stones, unifix cubes

Dictionary

Sharing: splitting into equal parts or groups, e.g. these sweets have been shared equally into 4 groups.

Money: Our currency in South Africa is Rands and Cents, e.g. R2 or R2,00; 50c; R4,75

Teach sharing of numbers

Concrete

Give learners 10 counters. Tell them to share them between 2 learners. Give learners 10 counters. They must share them between 3 learners. Ask them if there are any counters left.
Do a few more practical activities with numbers 0-20.

Content links: (Sharing) 5,58-63, 88, 110, 113, 118, 121 (Money) 25-26, 78-79, 108-109
Grade 1 links: (Sharing) 29-30, 114

Sharing and money cont...

Grade 3 links: (Sharing) 30a-30b, 31, 78, 81, 84, 87, 92-93, 126 (Money) 8, 56, 95a-95b, 107

| Teach money |
| :--- | :--- |
| Semi-abstract
 Learners must make coin rubbings and cut them out. Explain that 1c
 and 2c coins are not much used any longer and new ones are no longer
 made. Ask them to show:
 $5 c, 10 c, 20 c, 50 c, R 1, R 2, R 5$
 Ask them to show:
 $70 c, 80 c, 30 c, 25 c, 65 c, R 6, R 9, R 7 ~$
 Representational
 Learners must draw: 70c, 60c, 35c,
 $55 c, 95 c$. Abstract
 Learners must do the activity in the
 workbook.
 Ask them how many coins they
 drew. |

Learners must colour the correct coins that add up to the
same value.
Answers: Child colours the $10 c$ and $10 c$ coins.
Child colours the $5 c, 2 c, 2 c$ and the $1 c$ coins.
Child colours the $R 2, R 2$ and the $R 1$ coins.
Child colours the $R 5$ and $R 5$ coins (or $R 5, R 2, R 2$ and $R 1$).
Child colours the $R 5, R 5, R 5, R 2, R 2$ and $R 1$ coins.
Learners must trace the numbers and money symbols.
Homework
Building up and breaking down numbers that will give you a total of 8
and 9. Eg: $1+7=8,2+6=8,3+5=8,4+4=8,1+8=9,2+7=9,3+6$
$=9,4+5=9$.

Reflection questions

Can learners do the following?

- Share items and numbers from 0-20
- Recognise coins and bank notes?
- Identify coins and bank notes

Objectives

- Copy, extend and describe in words simple number sequences
- Identify, copy, and describe in words simple geometric patterns

Resources

Teacher: Classroom wall with beads hanging on a line
Learner: Workbook page 14, pencil and colouring pencils

beads	counters	shapes	unifix cubes

Teach patterns

Concrete - body
 Clap patterns: Clap 1; 2; 1; 2
 $\bigcirc \square \bigcirc \square \bigcirc \square \bigcirc \square \bigcirc \square \bigcirc \square$

Circle $=1$ clap
Square $=2$ claps

Concrete

Draw a pattern on the board and learners must copy it using beads, counters or pattern blocks.

Concrete

Use counters or shapes. Ask learners to lay out patterns with counters.

- Red, blue, red, blue
- Yellow, red, red, yellow O

Abstract

see page 14 of the workbook.

Dictionary

Pattern: An arrangement of things following a rule or rules.
e.g. $\bigcirc \square \square \bigcirc \square$
$2,4,6,8, \ldots$ The rule is to start at 2 and add 2 each time.
Copy a pattern:
 Extend a pattern: \qquad

Go to page 14 in the workbook.

Learners must look at each pattern and copy it. Learners must colour the last pattern using their colours of choice.

Learners must say the pattern e.g. Yellow circle, blue circle, yellow circle, etc. Learners must then extend the pattern.

Oral questions

Listen carefully and repeat: Green triangle, red circle, green triangle, red circle, etc. Do various examples like this with the learners.

Teach counting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s
 Lay out beads/counters/shapes in twos.
 Lay out beads/counters/shapes in fives:

 Lay out beads/counters/shapes in tens:

Go to page 15 in the workbook

15

Learners must colour the beads as they count in twos. The learners must colour the beads in twos and write the numbers at the bottom.

Answer: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Learners must colour the flowers as they count in fives. The learners must colour the flowers in fives and write the numbers at the bottom.

Learners must colour the beads as they count in tens. The learners must colour the beads in tens and write the numbers at the bottom.

Answer: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

Oral questions

Ask learners to count in: twos, fives and tens

Learners must trace the shape pattern.

Homework

Learners must trace the pattern for homework and colour it in.

Renlection questions

Can learners do the following?

- Copy, extend and describe in words simple number sequences
- Identify, copy, and describe in words simple geometric patterns

Content links: 36,99

Objectives

- Recognise and name 2-D shapes: squares, rectangle, circles, triangles
- Describe, sort and compare 2-D shapes in terms of: size, straight or round sides
- Recognise and draw a line of symmetry in symmetrical 2-D shapes

Resources

Teacher: Writing board and wall with a poster of the shapes
Learner: Workbook page 16, pencil and colouring pencils
Concrete resources: Beads, counters, stones, shapes made from old cardboard

Dictionary

2-D: a shape that only has two dimensions (length and width), no thickness. e.g. Triangle, rectangle and circle.
Polygon: a 2-D shape with 3 or more straight sides.
Triangle: a 3-sided polygon (a 2-D shape with 3 sides, e.g.
Rectangle: a 4 -sided polygon (a 2-D shape with 4 sides. Two opposite sides have equal length), e.g. $\square \square$
Circle: a 2-D shape made by a curve that is always the same distance from the centre, e.g. \bigcirc
Round edges: circles and ovals have round edges, e.g.
Straight edges: all polygons have straight edges, e.g.
 Symmetry: when one shape becomes exactly like another when you flip, slide or turn it. In grade 2 we only do flip, e.g.

Teach 2-D shapes

Concrete

Give learners shapes (you can cut them out of old cardboard). Ask them to identify the triangles, rectangles and circles.

Concrete

Ask each learner to take a triangle, rectangle and circle.
Trace around the sides with your finger.
Ask learners: "Does the shape have round or straight sides?"

(hearners must name the three shape and colour them in. Learners must identify the small and big shapes.

Learners must colour the rectangles blue, the circles red and the triangles yellow. Note and guide learners, for example if they confuse the rectangles and triangles.

Learners must colour all the big circles red, the rectangles blue and the small triangles yellow.
Learners must trace with their fingers around the shape.

Learners must colour in the correct answer.

Answers:

Triangle: straight
Rectangle: straight
Circle: curved

Oral questions

Which shape has 3 sides? Which shape has 4 sides? Which shape is round?

Teach symmetry

Concrete

You need a piece of old paper and paint.
Ask learners to fold the paper in half and unfold it again.
Tell the learners to place some wet paint on the one half. Then tell them to fold the paper and open it again. Ask them: "What do you see?"

Concrete

Learners must work in pairs. Give learners the outline of a butterfly. Also draw one on the board. Ask learners to place shapes on the one side. His or her friend should then place the shapes on the other side so that the sides are symmetrical.

Objectives

- Recognise and name boxes and balls
- Recognise and name objects that roll or slide
- Identify round and straight edges

Resources

Teacher: Scissors and glue, balls and boxes
Learner: Workbook page 18, pencil, colouring pencils, scissors and glue

Dictionary

3-D: a real life object that has height,
width and length, e.g. a box
Box: a 3-D shape that has two identical ends (top and bottom) and flat sides
Slide: the movement when you move a box from one point to another
Ball: any 3-dimensional object shaped like a ball

Roll: the movement a ball makes when you move it from one point to another
Round edge: a ball has round edges
Straight edge: a box has straight edges

Teach 3-D objects, slide and roll

Concrete

Ask learners each to bring a box and a ball to school. In groups learners must throw their balls into a box or boxes.

Concrete

Slide

- In groups learners must slide a box or boxes from point A to point B. Roll
- Place a box at point B.
- Place a brick inside so it doesn` t move. Learners stand at point A. Ask learners to roll the ball into the box.

Learners must look at the picture and ask what the children are doing. (Slide and roll). Learners must colour the correct answer. The box slides, the ball rolls.

Oral questions

Which object can slide? (box) Which object can roll? (ball)

Teach edges and position.

Concrete

Each group should have a ball and a box. In groups learners must listen to the teacher`s instructions. Start with the first child. Each child in a group should get a chance. Tell learners to place the ball:
next to
the box

in front of the box
 behind the box

Repeat if necessary.

Concrete

Give each group a ball and a box. Learners must move their hands over the ball, and say: "The ball has curved edges."
Learners must do the same with the box, saying, "The box has straight edges."

- $=8$

19 Go to page 19 in the workbook.
Learners must colour in the correct answer.
Answers: Ball - curved, box - straight, gift box - straight,
coloured ball - curved, box - straight, car box - curved and straight, tissue box - straight and curved (at the hole), cricket ball - curved

Learners must say whether the ball is behind, in front of, next to or on top of the box.
Answer: on top of, in front of, behind, next to
Learners must trace the words.

Homework

Learners must trace the words for homework

Reflection questions

Can learners do the following?

- Recognise and name boxes and balls
- Identify round edges
- Identify straight edges
- Identify the difference between: behind, in front of, next to and on top of

10 Length

Objectives

- Estimate, measure, compare, order and record lengths using non-standard measures (such as hands and feet)

Resources

Teacher: Writing
board
Learner: Cut-out

Dictionary

Shorter: This worm 000 is shorter than this 0000000 worm.
Longer: This worm \qquad is longer than this worm.

Higher: This building is higher than this building \boxminus

Lower: This building is s lower than this building \exists

Height: the distance from the top to the bottom, e.g. Grade 2 height words are "higher", "lower" and "taller" height

Length: the distance from one end to the other end, e.g Grade 2 length words are "shorter" and "longer"
length \longrightarrow

Teach length informally

Concrete

Learners must measure the length of their desks with their hands. Remind them to use the same person's hand. Learners must measure the length and width of the classroom using their feet.

Concrete

See questions 4 and 5 on page 21 in the learner's book.

10 Length continued

Content links: 40, 119
Grade 1 links: 12a-12b, 27, 74, 96
Grade 3 links: 13, 40, 94, 97

Go to page 20 in the workbook.

Learners must say which train is shorter and which is longer. They must colour the correct answer.

Answer: shorter

Learners must say which building is higher and which lower. Learners must colour the correct answer. Answer:

Learners must say which person is shorter and which taller. Learners colour the correct answer. Answer:

Oral questions
Show me anything in the class that is: Short/long/high/low/tall

Objectives

- Compare heavy and light objects
- Identify objects that are light
- Identify objects that are heavy

Resources

Teacher: Plank, brick and
variety of objects
Learner: Workbook page 22,
pencil and colouring pencils

Dictionary

Mass: Mass is commonly measured by how much something weighs. Weight: Weight is how heavy something is when you pick it up.
Heavier: A brick is heavier than a feather.
Lighter: A feather is lighter than a brick.
Mass and weight: In everyday English these two words are used as if they are the same. But there is a scientific difference. The mass of an object is a measure of how much matter it contains (the more there is the more force it will take to move it). The weight of an object changes according to gravity. An object would be weightless in space, even though it still has the same mass as it has on earth. You do not need to explain this distinction in Grade 2. But you may need to say that we use the special word "mass" when we are talking about how much stuff or matter there is in an object. We use "heavier" and "lighter" in Grade 2 to describe mass.
Kilogram: This is a measure we use for mass. The mass of a litre of water is about 1 kilogram.

Answer: All are lighter than one kilogram. Note that the ball can be more than 1 kilogram.

Learners must trace the words.

Homework

Find two objects at home, one that is heavy and one that is light and make a drawing of each.

Reflection questions

Can learners do the following?

- Compare heavy and light objects
- Identify objects that are light
- Can learners identify objects that are heavy

12 Capacity

Objectives

- Identify a container that is full
- Identify a container that is empty
- Identify a container that is half full
- Compare and order containers of the same size holding different volumes of liquid in them placed next to each other

Resources

Learner: Workbook page 24, pencil and colouring pencils, a variety of containers

Dictionary

Capacity: the amount that something can hold when full
Full: You cannot fit any more in.
We use "full" in Grade 2 to describe capacity.

Empty: There is nothing inside.

Teach capacity

Concrete

Learners must work in groups. Ask learners to each bring a container from home. Place a big container with water or sand in the middle of each group.

Ask learners to fill one container. Ask questions such as:

- How many containers are full?
- How many containers are empty?

Concrete

Ask learners to fill another container. Learners should also fill half of one container.

Ask questions such as:

- How many containers are full?
- How many containers are empty?
- How many containers are half full?

Concrete

Leave one big and one small container on the table, e.g. a yoghurt cup.
Ask learners how many small cups they think will fill the big container. In groups, learners must measure how many small cups will fill a big container.

12 Capacity continued

Go to page 24 in the workbook.

Learners must colour in the correct answer.

Ask the learners to say how many measures have been poured
into the jugs.

Oral questions

What will you prefer - an empty bottle of juice or a full bottle of juice? Why?

Learners must trace the words.

Homework

At home see how many containers there are which are full, half-full or nearly empty.

Reflection questions

Can learners do the following?

- Identify a container that is full
- Identify a container that is empty
- Identify a container that is half-full
- Compare and order containers of the same size holding different volumes of liquid in them placed next to each other

13 Time

Grade 3 links: $12,32,54,80,106$

Objectives

- Sequence events according to days using words such as yesterday, today, tomorrow
- Sequence events during a day using words such as morning, noon, afternoon, evening, night, early, late
- Compare lengths of time using words such as shorter, longer, faster, slower

Resources

Teacher: Scissors and glue
Learner: Workbook page 26, pencil, colouring pencils, scissors and glue

Dictionary

Today: the day we are in right now
Yesterday: the day before today
Tomorrow: the day after today
Morning: the period of time between sunrise and noon

Afternoon: the period after midday (noon) and before sunset

Evening: when the sun has set and it is dark (though the moon may be visible)

- What do you see?
- What is the boy doing?
- What is he doing in the morning?
- What is he doing during the day?
- What is he doing during the afternoon?
- What is he doing in the evening?

Teach time

Concrete

Look and talk

Go to page 26 in your workbook. Ask learners to look at all the

13 Time continued

4-4

Homework

 slowerLearners must look at the picture and answer the questions on tomorrow, today and yesterday.

school.

Learners must draw their own pictures on yesterday, today and tomorrow. Answer: Learners' own pictures.

Learners must trace the word and the pattern of shapes.

Draw a picture of what you wear during the day and another picture of what you wear at night.

Reflection questions

Can learners do the following?

- Sequence events according to days using words such as yesterday, today, tomorrow
- Sequence events during a day using words such as morning, noon, afternoon, evening, night, early, late
- Compare lengths of time using words such as shorter, longer, faster,

14 Birthday calendar

Objectives

- Recognise the months of the year
- Place birthdays on a calendar

Resources

Teacher: Old cardboard, writing board, marker and chalk Learner: Workbook page 28, pencil

Dictionary
 Calendar:

a diagram that shows what day and month it is for a particular year

Teach time

Concrete

Practical activity
Make a balloon picture from waste cardboard. You will need material for each month.

Paste or draw: "January" on the balloon
Ask learners that have their birthday in January to come and stand in front of the January balloon

Do the same with all the other months of the year.

14 Birthday calendar continued

Go to page 28 in the workbook

Workbook introduction - Look at the picture and talk about it.

Learners must trace the months of the year.

Oral questions

Ask learners to say the months of the year in order.
What comes after April?
What comes before July?

Learners must look at the balloon and write each child's name on the birthday calendar.

Answers:
January: Sipho, Maryke, Annie
February: Jeffrey, Simon
March: Sam, Juan
April: Betty, Liezel
May: Lettie, Ricco, George
June: Mpho
July: Palesa, Lisa, Kayla
August: Mbali, Brenda, Mary
September: John
October: Karin, Jaco
November: Gugu, Dian
December: Kara, Richard, Denise

Learners must trace the words.

Homework

Find out in which months of the year members of your family have their birthdays.

Reflection questions
Can learners do the following?

- Recognise the months of the year
- Place birthdays on a calendar

15 Collect and sort

Objectives

- Collect and sort everyday objects
- Draw pictures of sorted objects

Resources

Teacher: Writing board, counters, beads, unifix cubes, everyday objects Learner: Workbook page 30, pencil and colouring pencils

Dictionary

Sort: to arrange or group objects in a special way

Collect: to bring objects together, e.g. collect all the pencils in the class

3

Teach sorting and collecting of objects

Concrete

Practical activity
Take the learners outside. (This activity will differ from area to area.)
Collect things such as stones, leaves, waste, etc.)

- Sort stones according to colour or size.
- Sort leaves according to shape. If this is done in autumn, sort them according to colour.
- Sort waste according to paper, plastic, glass and metal.

Concrete:

Give learners the following to sort:

- coloured beads
- coloured counters
- coloured unifix cubes
- shapes
- any other objects in the class that can be sorted

15 Collect and sort continued

Oral questions

Tell the learners to listen carefully. Red, red, blue, red, blue, red. How many times did I say red? How many times did I say blue?

Reflection questions

Can learners do the following?

- Sort colours
- Sort light objects
- Sort heavy objects
- Sort small and big balls
- Draw pictures of sorted objects

16 Read and interpret

Objectives

- Collect and sort everyday objects
- Draw pictures of the sorted objects

Resources

Teacher: Writing board, counters, different cardboard shapes (squares, rectangles, triangles, circles, ovals)
Learner: Workbook page 32, pencil and colouring pencils

Dictionary

Sort: to arrange or group objects in a special way
Collect: to bring objects together, e.g. collect all the shapes in the class

Teach graphs

Concrete
Give the learners shapes to sort.

Ask them to lay out their shapes in columns.

16 Read and interpret continued

Oral questions

Tell learners to listen carefully. I have 1 purple flower, 1 yellow flower, 1 purple flower, 1 yellow flower and 1 red flower. How many red, yellow and purple flowers do I have?

Learners must look at the pictures and answer the questions.
Answers: 5 triangles, 3 rectangles, 4 circles, there are more triangles, there are more triangles, there are more circles There are 3 empty jugs, there are 5 half-full jugs and 4 full jars

Learners must trace the pattern and colour it in.

Homework
At home try and sort all the cutlery (knives, forks and spoons) in the kitchen. Draw a picture of the sorted objects.

17 Before, after and between

Objectives

- Describe numbers using before, between and after
- Describe and use odd and even numbers from 0-20
- Describe, compare and order numbers up to 25

Resources

Teacher: Writing board, beads, counters, stones, unifix cubes
Learner: Workbook page 34, pencil and colouring pencils

Dictionary

Even number: a number that is divisible by two, e.g. 2, 4, 6, 8 ..
Odd number: a number that is not divisble by 2, e.g. 1, 3, 5, $7 \ldots$
Before: e.g. 7 is before 8. After: e.g. 12 is after 11
Between: e.g. 17 is between 16 and 18

Teach before, after and inbetween

Concrete

Place 10 counters or beads or unifix cubes in a row on your desk.
Count it.

- Put your finger on counter/bead/unifix block number 4.
- Which counter/bead/unific block comes before 4? Show it.

Learners must describe the numbers using the words before, between and after.

Answers: 10 is before 11 and 12 is after 11,15 is before 16, 17 is after 16, 17 is before 18,19 is after 18, etc. Blue are odd and red are even numbers.

Learners must write the correct number in the square,
counting the beads.
Answers: • 4, 6, 8 • 16, 18, 20 • 21, 23, 25 • 12, 14, 16

Learners must fill in the missing numbers and answer the questions.
Answers: • 1, 2, 3, 4, 5, 6 • 11, 12, 13, 14, 15, 16 • 13, 14, 15, $16,17,18 \cdot 10,11,12,13,14,15 \cdot 16,17,18,19,20,21$ • 20, $21,22,23,24,25 \cdot 7$ is before $8 \cdot 17$ is affer $16 \cdot 9,10,11$ are between 8 and 12

Learners must colour the numbers between 14 and 17 blue, the number before 14 red, and the number after 17 yellow.

17 Before, after and between continued

Introduce odd and even

Concrete

Ask learners to take 10 red and 10 green counters. Learners pack them in a row: Green, red, green, red until all 20 counters are packed out.

- Learners count the counters pointing at them.
- Point to the first green counter. This is 1

Point to the second green counter. This is 3 .
Learners count the rest. We say that these are odd numbers.

- Point to the first red counter. This is 2.
- Point to the second red counter. This is 4.

Learners count the rest. We say that these are even numbers.

Oral questions

- Ask learners which number comes before 12,16 and 29 ?
- Ask learners which number comes after 11, 15 and 18 ?
- Which number comes between 15 and 17?

Learners must write all the numbers that are on the yellow beads and then all the numbers that are on the pink beads. Answers:
Yellow beads. 11, 13, 15, 17, 19, $21,23,25,27,29$. Odd numbers Pink beads. 12, 14, 16, 18, 20, 22, 24, 26, 28, 30. Even numbers

Look at the picture and answer the questions.

Answers: Each child gets 3 yellow beads. Yes, one bead is left. Each child gets 2 beads each. No beads left.

Learners must answer the questions.
Answer: • 14, 16, $18 \cdot 15,17,19 \cdot 19,21,23 \cdot 10,12,14,16$

Homework

- Bonds 8
- Do question 6 for homework.

Reflection questions

Can learners do the following?

- Identify the numbers before
- Identify the numbers between
- Identify the numbers after
- Describe and use odd and even numbers from 0-20
- Describe, compare and order numbers up to 25

18 Numbers 1 - 30

Objectives

- Count forwards and backwards in 1s to 100
- Count forwards and backwards in 10s to 100
- Identify, recognise and read number symbols and names from 0 to 30
- Recognise the place value for tens and units for numbers from 11 to 30

Resources

Teacher: Beads and counters
Learner: Workbook page 36, pencil
Concrete resources:

beads or abacus	counters	stones	unifix cubes

Dictionary

Tens: e.g. 10, 20, 30, 40, 50, 60, 70, 80, 90
Units: e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9
Number symbols: e.g. $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17$, $18,19,20,21,22,23,24,25,26,27,28,29,30$
Number names: one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, eighteen, nineteen, twenty, twenty-one, twenty-two, twenty-three, twenty-four, twenty-five, twentysix, twenty-seven, twenty-eight, twenty-nine, thirty

Introduce place value from 0-30

Concrete

00000000000000000000
Learners count the beads.
How many green beads are there? How many orange beads are there? Ask learners to show 10 green beads.

$$
0000000000
$$

Show 12 beads

Make sure learners count in groups of 10 .
10 beads +2 beads $=12$ beads .
Show 24 beads
Make sure learners count in groups of 10 .
10 beads +10 beads +4 beads $=24$ beads .
Show 36 beads
Make sure learners count in groups of 10 . 10 beads +10 beads +10 beads +6 beads $=36$ beads .

18 Numbers 1-30 continued

Workbook introduction: Learners must count how many books there are. Ask learners to look at the picture.

How many jars of paint do you count? Answer: 20 books, 20 jars of paint

Ask learners: "How many beads there are?"
Answers: 12, 15, 17, 18, 16
Learners must count how many books there are.
Answer: 14
Learners must fill in the missing number. You can ask learners to write each as a sum on a separate piece of paper or writing book.
Answers: $14=10+4,12=10+2,15=10+5,17=10+7,19=10$
$+9,13=10+3,26=20+6,28=20+8,21=20+1,30=30+0$

Learners must look at the first example and complete the rest on tens and untis.
Answer: 1 ten +5 units or $15=10+5,1$ ten +9 units or $19=10$
$+9,2$ tens +2 units or $22=20+2,2$ tens +4 units or $24=20+4$

Oral questions

What is 1 ten plus 4 units? 1 ten plus 6 units? 1 ten plus 7 units? etc
Learners must count how many beads there are.
Answer: $\cdot 24$ beads, $20+4=24 \cdot 28$ beads, $20+8=28$
Learners must write the numbers in words.
Answer: ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, twenty, twenty-one, twentytwo, twenty-three, twenty-four, twenty-five

Learners must look at the examples and complete the rest. Answer: 1 ten 3 units, 2 tens 6 units, 2 tens 1 unit, 1 ten 9 units

Homework

- Bonds 9
- Do question 7 for homework

Reflection questions

Can learners do the following?

- Count forwards and backwards in 1s to 100
- Count forwards and backwards in 10s to 100
- Identify, recognise and read number symbols and names from 0 to 30
- Recognise the place value for tens and units for numbers from 11 to 30

19 Number lines

Content links: 20, 23a-24, 29-31, 39a-39b, 41-42b, 44-46, $50-54,56,65-66,69,86,97-98,104$ Grade 1 links: 20, 22, 41, 45-46, 51, 58-59, $70-71,73,77,83-84,93,95,104,115,119$
Grade 3 links: 20 - 21b, 23, 25b, 27-28, 30b, 54, 65-67, 69-71, 98-104, 111

Objectives

- Use number lines supported by concrete apparatus

Resources

Teacher: Writing board, beads, counters, stones, unifix cubes, strips of paper Learner: Workbook page 38, pencil

Dictionary

Number line: a line with numbers placed in their correct position, useful for showing relations between numbers, for addition and subtraction

Teach number lines

Concrete

Draw a number line with chalk on the "ground" outside.
Learners stand at the start. Tell learners in maths we can say this is zero Ask: What will happen if you take one step forward? On what number will you be? (1) Do the same until they are on 10. Make the number line go to 20 and do the same.

Concrete to semi-abstract

To understand a number line give learners 10 beads.
-0000000000-
Give them a strip of paper the same length as the beads.
\square
Place the beads on the strip of paper with the string of one end of the string of beads touching the side of the paper.

Learners take a pencil or crayon and draw the intervals between each bead.

Learners write the numbers on the intervals.

Learners remove the beads and now have a completed number line.

19 Number lines cont...

Place three shoes. The learner must try to jump over the first two shoes and then where she or he landed jump over the third shoe. Move the shoes further apart and try it again.

Learners must complete the number lines by filling in the missing numbers.
Answer: • 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 • 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

Homework

- Bonds 5,6
- Do the last 2 number lines for homework.

Reflection questions
 Can learners do the following?
 - Use a number line from 0-20

20 More number lines

Content links: 19, 23a-24, 29-31, 39a-39b, 41-42b, 44-46, $50-54,56,65-66,69,86,97-98,104$ Grade 1 links: 20, 22, 41, 45-46, 51, 58-59, $70-71,73,77,83-84,93,95,104,115,119$

Objectives

- Add numbers from 0-20
- Use number lines from 0-20 supported by concrete apparatus

Ask learners to stand on zero.
Ask them to jump from zero to three. Count 1, 2, 3.
Ask them to jump another 4 forward. Count 4, 5, 6, 7.
On which number are you standing?

Resources

Teacher: Writing board, number line outside
Learner: Workbook page 40, pencil

Dictionary

Number line: a line with numbers placed in their correct position, useful for showing relations between numbers, for addition and subtraction

Teach number lines

Concrete - body

In groups

Draw a number line on the "ground" outside.
Ask learners to stand on zero. Ask them to jump from zero to four in one jump. Ask them to jump another 2 in one jump. On which number are you standing?

Do similar activities with a number line from 0-20.
Extend your number line to 20.

Ask learners to stand on zero. Ask them to jump from zero to 9. Count 1, 2, $3,4,5,6,7,8,9$. Ask the learners to jump another 6 forward. Count 1, 2, 3, $4,5,6$. On which number are you standing?

20 More number lines cont...

21 Addition and subtraction

Objectives

- Add numbers from 0-20
- Subtract numbers from 0-20

Resources

Teacher: Writing board, beads, counters
Learner: Workbook page 42, pencil and colouring pencils

beads	counters	stones	unifix cubes

Dictionary

Addition: Addition is finding the total or sum by combining two or more numbers, e.g. $5+6=1,3+2+7=12$
The symbol for addition is

Subtraction: Subtraction is taking ane number away from another, e.g. $11-6=5$

The symbol for subtraction is

Teach addition and subtraction

Concrete

Give learners 50 different coloured counters.
Ask: "How many counters do you count of each colour?"

Ask the learners to give you the following totals. red counters + green counters = ? yellow counters + blue counters = ? red counters + yellow counters = ?

Move 8 beads to the left.

Count another 7 .
How many beads do you have? Answers: $8+7=15$ or $8+2+5=15$
Show 9 beads. Move 5 beads to the right.
How many beads do you have left? Answer: 4

21 Addition and subtraction cont...

Content links: 5, 23a-24, 37-39b, 41-42b, 72-74, 77, 101-102, 104-105 Grade 1 links: 15, 19-22, 73, 77, 104

Learners must write the number of beads. Answers: 2 Pink beads, 7 Red beads, 8 Blue beads 10 Green beads, 6 Orange beads, 4 Purple beads

Learners must write the number of beads in the boxes and calculate it.
Answers: $7+10=17,8+2=10,6+8=14,4+10=14$, $4+8=12$

Oral question

Let us count $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20$. Ask the learners to add the sums mentally:
$8+2=10$

$$
4+10=14
$$

$$
6+3=9
$$

$$
8+7=15
$$

$$
9+3=12
$$

Learners must complete the patterns.
Answers: green red green, pink yellow pink, blue orange blue, green purple green, yellow brown yellow

Learners must use the beads to fill in the boxes.
Answers: $8+7=15,8+2+5=15,9+6=15,9+1+5=15$
Learners must match the picture with the sum and give the answer.
Answers: Row 1 with Row 2 (Answer 5), Row 2 with Row 1 (2), Row 3 with Row 4 (1), Row 4 with Row 5 (4), Row 5 with Row 3 (5)

Learners must look at the pictures and write a sum.
Answers: $9-6=3,7-1=6,8-4=4$ and $6-4=2$

Homework

- Bonds 8
- Complete question 6 for homework.

Reflection questions

Can learners do the following?

- Subtract numbers from 0-20
- Add numbers from 0 - 20

22 Days, weeks and months

Objectives

- Name and sequence the days of the week and months of the year
- Recognise the special days of religions in South Africa
- Place learner's own birthday on a calendar

Resources

Teacher: Scissors and glue, prepared posters
Learner: Workbook page 44, Cut-out 2, pencil, scissors and glue

Dictionary

Calendar: a diagram that shows what day and month it is
Day: the time from sunrise to sunset or the time of a full 24 hour day. The days of the week have names: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday.
Week: a time period of 7 days
Month: This is one of the twelve time periods of a year. We have twelve months: January, February, March, April, May, June, July, August, September, October, November, December.

Teach the calendar

Ask learners to look at the days of the week poster. Let us say the days of the week. What day is your favourite day? Why?

Ask learners to look at the months of the year poster shown at the top of Workbook page 44.
Ask them to say the months. Then ask them "When is your birthday?" Write the learners' birthdays on the classroom calendar.

22 Days, weeks and months

Learners answer the questions on weeks.
Answers: Tuesday; Thursday; Sunday; Tuesday; 5th; Thursday and Friday

Learners answer the questions on days and months.
Answers: March; July; September; February, March, April and May; January; December

Oral question

Learners must say the days of the week and the months. Start with any day of the week and months of the year. Learners should continue.

Talk about the religion days of South Africa, historical events and birthdays.

Historical events
Human Rights Day Freedom Day Workers' Day Youth Day National Women's Day Heritage Day Day of Reconciliation

Learners use Cut-out 2 and paste onto the calendar months, three religious holidays and all the South African holidays. Answers:
March: Human Rights' Day
April: Freedom Day
May: Worker's Day
June: Youth Day
August: National Women's Day
September: Heritage Day
December: Day of Reconciliation

Reflection questions

Can learners do the following?

- Recognise and name the days of the week and the months of the year
- Recognise the special days of religions in South Africa
- Place their own birthday on a calendar

23a Addition

Objectives

- Add numbers from 0-20
- Use number lines from 0-20 supported by concrete apparatus

Resources

Teacher: Writing board, counters
Learner: Workbook page 46, pencil and coloured pencils

Dictionary

Addition on a number line
e.g. $2+3=$

or

23a Addition cont...

Workbook introduction: Ask the learners to sort and make a drawing. Count the marbles in the picture.

Learners look at the picture and add the marbles.
Example: Red + blue, learners should add the red marbles and the blue marbles.
Answers: $\cdot 3+4=7 \cdot 5+4=9 \cdot 6+4=10 \cdot 5+7=12$

- $3+5=8 \cdot 7+4=11$

Learners must add the numbers.

Note what the learners use to add: their fingers, counters, drawing a picture or mentally. If a learner makes a mistake ask him or her: "How did you get the answer?" Through the learners' responses you may pick up common errors they make.

Answers: • $5 \cdot 10 \cdot 12 \cdot 11 \cdot 15 \cdot 12 \cdot 14 \cdot 14 \cdot 11$

- 18 • $12 \cdot 16 \cdot 13 \cdot 15 \cdot 14$
Learners must look at the number line and write a sum.

Oral questions
Learners add the following mentally, $3+2,7+4,9+6,7+8$

For those learners that are struggling, let them move from one interval to the next, making hoops, using their fingers.

Learners must make the scales equal by drawing beads and filling in the empty boxes.
Answers: • 5 and $1+4 \cdot 6$ and $2+4 \cdot 3+4$ and $7 \cdot 2+1$
and $1+2 \cdot 6+3$ and $3+6 \cdot 2+8$ and $8+2$
Homework

- Bonds 7,8
- Learners do the problem for homework.

Reflection questions

Can learners do the following?

- Add numbers from 0-20
- Use number lines from $0-20$ supported by concrete apparatus

Content links: 5, 21, 24, 37-39b, 77, 82, 72-74, 101-102, 104-105

23b Subtraction

Objectives

- Subtract numbers from 0-20
- Use number lines from 0-20 supported by concrete apparatus

Resources

Teacher: Writing board, counters
Learner: Workbook page 48, pencil
Concrete resources:

beads	counters	stones	unifix cubes

Dictionary

Subtraction: Subtraction is taking ane number away from another, e.g. $11-6=5$

The symbol for subtraction is

Teach subtraction from 0-20

Concrete
 Give each learners 20 counters. Say to the learners.
 - Place 16 counters in front of you.
 - Take 9 counters away.
 Make a drawing of this

Do a few examples like this.

Learners must look at the picture and write minus sums. Answer:

red sweets	8-5 = 3
green sweets	8-6=2
yellow sweets	9-5 $=4$
orange sweets	11-6 =
pink sweets	10-3

Learners must minus the numbers.

Answer:

- 2 - 4 - 9
- 6 • 8 • 8
- 5 • 6 • 7
- 9 • 7 • 8
- 6 • 9 • 7

Learners must complete the sum and notice that they are not equal.

Answer:

- 9-3 and 3-9
- 5-2 and 2-5

24 Some more addition

Content links: 5, 21, 23a-23b, 37-39b, 77, 82, 72-74, 101-102, 104-105

Objectives

- Recognise and use place value from 1-25
- Add numbers from 0-20

Resources

Teacher: Writing board, place value number cards
Learner: Workbook page 50, pencil
Concrete resources:

| beads counters | stones | unifix cubes |
| :---: | :---: | :---: | :---: |

Dictionary

Number cards or flard cards: Cards used to decompose two-digit

Teach addition

Workbook introduction 1: Learners must match the cards to the sums.

Answers:

Add the numbers in each block and write down the total.

24 Some more addition cont...

Learners must solve the problem. Lisa has 9 counters and Aakar has 8. What is the total?

Answer: 17 counters

Homework

- Learners do the problem in Question 5 for homework.

Reflection questions
Can learners do the following?

- Recognise and use place value from 1-25
- Add numbers from 0-20

25 Money

Objectives

- Solve money problems involving totals and change in cents

Resources

Teacher: Writing board, money
Learner: Workbook page 52, pencil and colouring pencils, Cut-out 3,
scissors
Concrete resources:

beads	counters	stones	unifix cubes

Dictionary

Money: coins or notes used as a payment for goods and services. It is a medium of exchange. Each coin or money note represents a specific value
Cent: a unit of money equal to one hundredth of the main currency unit (such as the Rand, Dollar, or Euro)
Piggy bank: a money box (often in the shape of a little pig) used to store money and given to children to teach them the idea of saving money. Banks often use piggy bank illustrations to advertise savings products.

Teach cents that give a total less than 100c

Representational (semi-concrete/semi-abstract)

Use the coins from Cut-out 3.
Ask learners to show you 10c, 20c, 50c.
Tell learners that we don't use the 1c and 2c anymore in South Africa. But
it is still good to know what the coins look like.
Ask learners to take any two coins. Add it. Do the same with $3,4,5$ and 6

Workbook introduction
Learners must look at the picture and discuss it.

Learners must say how many cents there are? Answers: 85 cents and 50 cents

25 Money continued

Reflection questions
Can learners do the following?

- Solve money problems involving totals and change in cents

26 Note money

Objectives

- Solve money problems involving totals and change in rands

Resources

Teacher: Writing board
Learner: Workbook page 54, notes from Cut-out 3, pencil, colouring pencils, scissors

Dictionary

Notes: Banknotes are units of money issued on printed paper. Currently in South Africa there are notes to the value of R10, R20, R50, R100 and R200.

Teach notes that gives a total up to R100

Concrete

Use the notes from Cut-out 3.
Ask learners to show you the R10, R20, R50 and R100 note.
Ask learners to add the following.
$R 10+R 20=$
$R 20+R 20=$
$R 10+R 20+R 20=$
$R 50+R 20=$
$R 50+R 20+R 20=$

Learners must cut the notes from Cut-out 3 and paste the correct amount here.

26 Note money continued

Term 1

27 Patterns

Objectives

- Copy, extend and describe simple patterns
- Create and describe simple patterns

Resources

Teacher: Scissors and glue, writing board, coloured chalk, plastic or cardboard shapes, paper
Learner: Workbook page 56, Cut-out 4, pencil, colouring pencils, scissors and glue

Dictionary

Patterns: things that are arranged following a rule or rules, e.g.

Teach patterns

Concrete - body
Write and draw on the board. Then tell learners each shape
represents: 1 clap 2 claps 3 claps

Learners look at the patterns on the board and clap them.

Concrete

Give learners some plastic shapes or ones you made from old cardboard. Start to draw a pattern on the board. Learners copy and complete it using the shapes.

Representational

Give learners some old paper, e.g. the back of a old photocopy
paper. Draw the following on the board. Learners copy and extend them.

Learners clap the pattern.

Learners must copy the pattern. Use Cut-out 4. Answer: Should look the same as the pattern on the left.

Learners copy the patterns.

$\Delta O \Delta O \Delta O \Delta O \Delta O \Delta$
$20 \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta$
00000000000

Homework

Bonds 5, 6, 7 and 8

Rellection questions

Can learners do the following?

- Copy, create and describe simple patterns
- Create and describe a pattern

28 More patterns

Objectives

- Copy, create and describe simple patterns
- Draw simple patterns
- Extend simple patterns

Resources

Teacher: Writing board, cardboard shapes (squares, circles, triangles, rectangles), counters
Learner: Workbook page 58, pencil, colouring pencils
Concrete resources:

beads	counters	stones	unifix cubes

Dictionary

Patterns: things that are arranged following a rule or rules, e.g

Teach patterns

Concrete

You need to prepare the shapes in question 1 for each group using old cardboard. Per group:

- Two squares
- Two circles
- A triangle that is smaller than the square
- A square and a rectangle that is smaller than the circle
- Two small circles
- Two small triangles

Ask learners to open on page 58 in their workbook. Learners should copy the four patterns in question 2, using the cardboard shapes.

-

Concrete

Give learners some counters. (See colours on page 59 of the workbook, question 7).
Copy and extend the question 7 using the counters.
Representational
Learners make a drawing of the patterns.

28 More patterns continued

Ask the learners to describe each pattern in words. Tell them that words might help you.

rectangle

square
triangle
circle

Learners must colour the next pattern. Answers: $\square 0$
$\square \square$
$\triangle \mathrm{OD}$
$0 \triangle$ (a)
Learners must draw the next pattern. Answer: Learners must draw the next pattern. Answer:
 Learners must extend the pattern. Answer:

Learners must draw their own patterns using triangle, circles, squares and rectangles. Answer: Learner's own pattern

Learners draw the next pattern. Answers:

Learners must complete the triangle so that they only have one circle at the top. Answer:

Learners must create their own colour patterns using the shapes. Answer: Learner's own patterns. Make sure it forms a pattern. If you cannot identify the pattern ask the learner to explain it.

Oral questions

What comes next:

- blue, blue, red, blue, blue, red, blue, blue, red, ...(blue)
- triangle, square, circle, triangle, square, circle, triangle, square, circle ... (triangle)
- big, small, small, big, small, small, big, small, small, ... (big)

Homework
Learners
must
complete
question 8.

Reflection questions

Can learners do the following?

- Copy, create and describe simple patterns?
- Draw a simple pattern
- Extend a simple pattern

29 Multiplication: x 2

Objectives

- Add the same number repeatedly
- Multiply numbers 1 - 10 by 2

Resources

Teacher: Writing board, counters
Learner: Workbook page 60 and coloured pencils

Concrete resources:

| beads counters | stones | unifix cubes |
| :--- | :--- | :--- | :--- |

Dictionary

Multiplication: Multiplication is repeated addition.
E.g. $2+2+2=2 \times 3=6$

Twos: e.g. 2, 4, 6, 8, 10, .

Teach 2 x table from 0-20

Concrete

Go outside: Draw a number line from 0 - 20. Ask the learners to jump in twos to the end. How many times did you jump?
Stand on zero, jump 4 jumps in 2 s . On what number are you?
Stand on zero, jump 6 jumps in 2 s. On what number are you?

Concrete

Give learners 20 counters each. Ask them to take 2 counters and place them in front of them. This is group 1. Take another 2 counters, this is group 2. Take another 2 counters, this is group 3 . Let us look at your counters.

Let us count the counters in groups: 2, 4, 6
Let us make an addition sum: $2+2+2=6$
Let us make a multiplication sum: $3 \times 2=6$
Do the same with:

Talk about the picture

Ask learners how many sweets are on each table.
Answer: 8, 6, 4
Ask them, "How did you count the sweets?" (Some children may say $1,2,3 \ldots$ others may say $2,4,6, \ldots$)

29 Multiplication x 2 cont...

	Learners make a drawing and answer the questions using the number lines. Answers: - 10,12 - 12 - 12
	Answers: - 12 - $6+6=12$ - $2 \times 6=12$ - Child makes a drawing of 12 counters to show the answer.
	Learners must multiply 2 by 7. Answer: 14. They may draw the 7 spiders with two eyes. Write: Trace the number pattern.
Homework - Do question 5 as homework.	
Reflection questions Can learners do the following? - Add the same number repeatedly - Multiply numbers 1 - 10 by 2	

30 Multiplication: x 5

Objectives

- Add the same number repeatedly
- Multiply numbers 1 - 10 by 5

Resources

Teacher: Writing board, counters
Learner: Workbook page 62, pencil and coloured pencils
Concrete resources:

Dictionary

Multiplication: Multiplication is repeated addition.
E.g. $5+5+5=3 \times 5=5$

Twos: e.g. $5,10,15,20,25, \ldots$
Teach 5 x table from 0-50

Concrete

Go outside: Draw a number line from $0-50$. Ask the learners to jump in fivess to the end. How many times did you jump?
Stand on zero, jump 4 jumps in 5 s . On what number are you?
Stand on zero, jump 6 jumps in 5 s. On what number are you?

Concrete

Give learners 30 counters each. Ask them to take 5 counters and place the counters in front of them. This is group 1. Take another 5 counters, this is group 2. Take another 5 counters, this is group 3. Let us look at your counters.

We can say each group has 5 counters. Let us count the counters in groups: $5,10,15$ Let us make an addition sum: $5+5+5=15$ Let us make a multiplication sum: $3 \times 5=15$
Do the same with:

Talk about the picture. Ask learners how many sweets are on each table?

Term 1

30 Multiplication: x 5 continued

Learners must make a drawing based on what they find from the number line and answer the questions.

Answers:

- 20 • 20 • 20
- Child makes a drawing of 20 counters
- $20 \cdot 10+10=20 \cdot 10 \times 2=20$
- Learner makes a drawing of 20 counters.

Write:

Trace the number pattern.

Renlection questions

Can learners do the following?

- Add the same number repeatedly
- Multiply numbers $1-10$ by 5

31 Multiplication stories

Objectives

- Add numbers 2 and 5 repeatedly
- Multiply numbers $1-10$ by 2 and 5

Resources

Teacher: Writing board, coloured chalk, counters
Learner: Workbook page 64, counters from Cut-out 4 (Worksheet 27),
pencil and colouring pencils
Concrete resources:

| beads counters | stones | unifix cubes |
| :---: | :---: | :---: | :---: |

Dictionary

Multiplication: Multiplication is repeated addition. e.g

Fives: e.g. $5,10,15,20,25$,

Teach 5 x table from 0-60

Concrete - body

Ask one child to come to the front of the class.
Ask him or her to lift up his or her hands.
How many fingers do you count?
Let us count: 5, 10.

Concrete

Show the fingers using counters.

Representational/semi-abstract
Draw a number line on the board. Ask one child to make a drawing of his or her counters on the number line on the board.

Do the same with other children.

31 Multiplication stories continued

Learners must look at the picture. Learners must make their own story using total number of ears, eyes hands and feet.

Read to the learners: We are 10 friends.
Ask: "How many hands do we have?"
Learner must make a drawing of the 10 friends' hands. Suggest to them that they draw the hands in pairs. Learners show it with counters, by placing the counters and then drawing them.
Learners must then show it on a number line. Learners must write a multiplication sum for it. Answers:

- Drawing of 20 hands
- Learner makes his or her own drawing.
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
- $2+2+2+2+2+2+2+2+2+2=202 \times 10=20$

If any children have written $1+1+1 \ldots$ and $1 \times 20+20$, suggest that they try again by adding and multiplying 2 s .

Learners must read: Susan's family has 10 pairs of shoes.
Learner must make a drawing of Susan's family's shoes. Learners show it with counters, by placing the counters and then drawing them. Learners must then show it on a number line. Learners must write a multiplication sum for it.

Answers: - 20 shoes - Learner makes his or her own drawing. - 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 counters. - $2+2+2+2+2+2+2+2+2+2=202 \times 10=20$ Learners write their own story using 6 children and hands. Note previously we used 10 children and hands.
Oral questions Count in: Tens and twos Repeated addition: $2+2+2+2$. Give a variety of sums up to 20 . Give a variety of sums up to 100 . Multiplication. - $1 \times 2,2 \times 2,2 \times 3,2 \times 4,2 \times 5,2 \times 6,2 \times 7,2 \times 8,2 \times 9,2 \times 10$ - $1 \times 10,2 \times 10,3 \times 10,4 \times 10,5 \times 10,6 \times 10,7 \times 10,8 \times 10,9 \times 10,10 \times 10$

Homework

Find a picture of people in a magazine. How many eyes, hands, fingers and toes do they have?

[^0]
32 Three-dimensional objects

Objectives

- Recognise and name ball shaped objects
- Recognise and name box shaped objects
- Describe, sort and compare 3-D objects using terms such as: straight edge, curved edge, roll, slide
- Describe the position of 3-D objects using terms such as: in front, at the side, behind, on top

Resources

Teacher: Writing board, balls, boxes and cylinders
Learner: Workbook page 66, pencil and colouring pencils

Dictionary

Sphere: a 3-dimensional object like a ball In grade 2 we use the word ball and not sphere.

Prism: a solid object that has two identical ends and flat sides. In grade 2 we use the word box and not prism

Introduce 2-D shapes and 3-D objects

Concrete and representational

Each child brings a ball or a box from home. Learners places the balls and boxes in the middle of their group. Ask learners to show you a ball and then a box.

Open your books on page 66.

- The teacher holds up a ball. "Show me all the balls in the picture."
- The teacher holds up a box. "Show me all the boxes in the picture." Show the learners a cylinder. This can be any container that looks like a cylinder.
Tell learners that this container's shape is a cylinder. Ask learners to find all the cylinders in the pictures on pages 66 and 67.

Ask the learners to look at the picture. How many balls, cylinders and boxes do you see?

Answers: Balls: 5; Cylinders: 4; Boxes: 5
Learners are asked to colour all the balls red, the boxes blue and the cylinders green.
Answers: Balls: 5; Boxes: 5; Cylinders: 5

32 Three-dimensional objects continued

Learners must colour the correct answer.
Answer: curved edges, straight edges, curved edges
Learners must mark the correct answer.
Answer: roll, slide, slide and roll

Oral questions

Can this object roll?
Can this object slide?
Can this object roll and slide?
Ask the learners how many balls, boxes and cylinders do they see in this picture?

Answer: 3 cylinders, 4 boxes and 4 balls

33 Order and compare numbers: 1 - 40

Objectives

- Count objects from 1-40
- Compare whole numbers using the terms: smaller than, greater than, more than, less than, equal
- Represent even numbers from 1-40
- Represent odd numbers from 1 - 40

Resources

Teacher: Writing board, counters
Learner: Workbook page 68, pencil and colouring pencils

Dictionary

Order numbers: This is putting numbers in order according to a rule. We can also arrange numbers from the smallest to the largest (ascending order), e.g. 8, 16, 23, 26, 30.
We also arranged numbers from the largest to the smallest (descending order), e.g. 30, 27, 22, 19, 8.
Note: You do not introduce the words ascending and descending to your learners.

Compare numbers: We should know if one number is bigger, smaller or the same as another number.
= If two numbers are equal we use the "equal" sign, e.g. $3+5=8$.
< If one number is smaller than another, we use a "less than" sign, e.g. $4<9$.
> If one number is bigger than another, we use a "greater than" sign, e.g. $6>2$

Note: We do not need to introduce the symbols < (smaller than) or > (bigger than) yet. We make use of the words smaller and bigger, but you can show them to those learners that already grasp the concept.

Introduce comparing and ordering of numbers

Concrete

In pairs give learners 30 counters. Without counting, the first learner takes some counters. The second learner takes the rest of the counters.

- How many counters do each of you have?
- Who has more counters?
- Who has less counters?

Representational (semi-concrete/semi-abstract)
Ask learners each to draw between 20-30 flowers on a page. In groups ask:

- Who has the most flowers?
- Who has the least flowers?

33 Order and compare numbers: 1-40

Ask the learners to look at the pictures and answer the questions. Who has more oranges? Who has more apples? Answers:
The girl has 14 oranges and the boy has 13 oranges. The girl has more oranges than the boy.
The girl has 30 apples and the boy has 25 apples. The girl has more apples than the boy.

Learners must count the beads and fill in the empty boxes.
Answers:

- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- $11,12,13,14,15,16,17,18,19,20$
- 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
- 31, 32, 33, 34, 35, 36, 38, 39, 40

Learners must look at the beads in question 2 and answer the questions. Answers: • 7 • 14•19•23

Oral question

- Give me 3 numbers smaller than 28.
- Give me 3 numbers bigger than 20.
- Which number is bigger 12 or 13 ?
- Which number is smaller 20 or 22 ?

34 Order and compare numbers: 40 - 50

Objectives

- Compare whole numbers using the terms: smaller than, greater than, more than, less than, equal
- Represent even numbers from 40-50
- Represent odd numbers from 41-49

Resources

Teacher: Writing board, counters
Learner: Workbook page 70, pencil and colouring pencils.

| beads counters | stones | unifix cubes |
| :---: | :---: | :---: | :---: |

Dictionary

Order numbers: This is putting numbers in order according to a rule. We can also arrange numbers from the smallest to the largest (ascending order), e.g. 8, 16, 23, 26, 30.
We also arranged numbers from the largest to the smallest (descending order), e.g. 30, 27, 22, 19, 8.
Note: Do not need to introduce the words ascending and descending to your learners.

Compare numbers: We should know if one number is bigger, smaller or the same as another number.
= If two numbers are equal we use the "equal" sign, e.g. $3+5=8$
< If one number is smaller than another, we use a "less than" sign, e.g. 4 <9.
> If one number is bigger than another, we use a "greater than" sign, e.g. $6>2$

Note: We do not need to introduce the symbols < (smaller than) or > (bigger than) yet. We make use of the words smaller and bigger, but you can show them to those learners that already grasp the concept.

Teach comparing and ordering of numbers

Concrete

In pairs give learners 50 counters. Without counting, the first learner takes some counters. The second learner takes the rest of the counters.

- How many counters do each of you have?
- Who has more counters?
- Who has less counters?

Representational

Ask learners each to draw between 40 - 50 balls on a page. In groups ask: - Who has the most balls?

- Who has the least balls?

34 Order and compare numbers: 40-50

Learners must count and say who has more pineapples. Answer: The girl has 40 pineapples and the boy has 43. The boy has more pineapples than the girl.

Note if the learners are counting in groups of ten and not each pineapple individually.

Learners must count the beads and fill in the empty boxes.
Answers:

- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
- 31, 32, 33, 34, 35, 36, 37, 38, 39, 40
- $41,42,43,44,45,46,47,48,49,50$

After filling in the empty boxes, ask the learners to count in tens: 10, 20, 30, 40, 50, 60

Learners must look at the beads and answer the questions. Answers: • 2 • 32 • 37 • 46

Learners must colour the numbers that are smaller than 40 in blue and bigger than 36 in green. Answers: • 37, 38, 39 green Block 1: • 30, 31, 32, 33, 34, 35, 36, 37, 38, 39
Block 2: • 37, 38, 39, 40

Oral question

Give 3 numbers smaller than 50 but bigger than 40 . Give 3 numbers bigger than 40 but smaller than 50 .

Homework

- Do question 5 for homework.

Reflection questions

Can learners do the following?

- Compare whole numbers using the terms: smaller than, greater than, more than, less than, equal
- Represent even numbers from $40-50$
- Represent odd numbers from 41-49

35 Numbers 40-50

Objectives

- Count everyday objects up to 100
- Count in tens forwards and backwards from any multiple of 10
- Recognise and use number symbols and names from 0-50

Resources

Teacher: Writing board, beads, counters
Learner: Workbook page 72, pencil and colouring pencils
Concrete resources:

| beads or
 abacus | sounters | unifix cubes |
| :--- | :--- | :--- | :--- |

Dictionary

Tens: e.g. $10,20,30,40,50,60,70,80,90$
Units: e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9
Number symbols: e.g. $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17$, $18,19,20,21,22,23,24,25,26,27,28,29,30$
Number names: one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, eighteen, nineteen, twenty, twenty-one, twenty-two, twenty-three, twenty-four, twenty-five, twentysix, twenty-seven, twenty-eight, twenty-nine, thirty.

35 Numbers 40-50 continued

Ask the learners to count the bricks in the wall. Answer: 50

Learners count how many beads there are.

Answers: 45 beads, 40 (Count: 10, 20, 30, 40) + $5=45$ 47 beads, 40 (Count: 10, 20, 30, 40) + $7=47$

Learners complete counting in ones. Answers:

- 20, 21, 22, 23, 24, 25, 26, 27, 28, 29
- 30, 31, 32, 33, 34, 35, 36, 37, 38, 39
- $40,41,42,43,44,45,46,47,48,49$

Learners count the circles and complete the sum Answer: 40 + $5=45$
Learners write the words for the numbers:
Answers: forty-one, forty-two, forty-three, forty-four, forty-five,
forty-six, forty-seven, forty-eight, forty-nine, fifty

36 Squares, rectangles, triangles and circles

Grade 3 links: 11, 72, 127

Objectives

- Recognise and name the 2-D shapes of squares, rectangles, triangles and circles
- Describe, sort and compare these shapes in terms of: shape, size, colour, and straight or curved edges or sides

Resources

Teacher: Writing board, cardboard or plastic shapes of squares,
rectangles, triangles and circles
Learner: Workbook page 74, pencil and colouring pencils

Dictionary

Triangle: a flat shape with 3 sides, a 3 -sided polygon

Square: a flat shape with 4 sides equal in length (a 4 -sided polygon) \square Rectangle: a flat shape with 4 sides and 4 right angles (a 4 -sided polygon)

Teach 2-D and 3-D shapes

Concrete

Give the learners plastic shapes (or make your own from old cardboard). -
Show me all the triangles.

- Show me all the rectangles.
- Show me all the circles.

Concrete

Sort the shapes in triangles, rectangles and circles.

Do the same activity but ask learners to show you the: red triangle, blue triangle, yellow circle, red rectangle, etc.

Give learners each a triangle, a rectangle and a circle. Which shape has straight edges? Show me? Which shape has curved edges? Show me?
Straight edges:

Curved edges:

36 Squares, rectangles, triangles and circles cont...

Homework

- Learners complete Question 5 for homework.

Reflection questions
Can learners do the following?

- Recognise and name the 2-D shapes of squares, rectangles, triangles and circles
- Describe, sort and compare these shapes in terms of: shape, size, colour, and straight or curved edges or sides

37 Addition and subtraction up to 20

Objectives

- Add up to 20
- Subtract from numbers up to 20
- Use appropriate symbols (+, -, =)

Resources

Teacher: Writing board, unifix cubes, place value number cards
Learner: Workbook page 76, pencil and colouring pencils

Dictionary

Addition: finding the total or sum by combining two or more numbers, e.g. $5+6=1,3+2+7=12$

The symbol for addition is

Subtraction: taking ane number away from another, e.g. 11-6=5 The symbol for subtraction is

Introduce the lesson

Concrete

Give learners 20 unifix cubes.
Ask learners to put a unifix train (10 cubes) and 6 cubes in front of them.

Ask them to place another 5 cubes in front of them.
Can you make a "train" using the loose cubes? Show it.

```
Write a sum: \(16+5=21\)
```


Abstract

Give learners place value cards. Ask the learners to place a 10 number card and a 6 number card in front of them.
Ask them to then place a 5 card in front of them.

What is $6+5=$? Can you swop the 6 and the 5 card \square 0 10 for a ten card and unit card? What is the answer? 21 \qquad
 Concrete
Give learners 20 unifix cubes.
Ask the learners to place one unifix train and 5 cubes on their desk.
Uususe

37 Addition and subtraction up to 20 continued

Take 4 cubes away. What is the answer? 11. Say it as a sum: 15-4 = 11

Abstract
Ask the learners to place a 10 number card and a 5 number card in front of them. What will happen if I take 4 away? Show it. What is your answer? $15-4=11$. Write the sum and
 the answer on your black board.
Ask learners to place one unifix "train" and 6 cubes on their table.

Take 9 cubes away? Can you? What can you do? (Swop one cube train for 10 cubes.) Let us say it. 16-9 = 8

Abstract

Ask learners to work in pairs or groups. Place a 10 and 6 number card in front of them. Take 9 away? Can you? What should you do? (Swop the 10 card for a 9 and a 1 card). Minus 9. The answer is 7 . Write it as a sum. 16-9 $=7$

Learners must recall the answers as fast as they can.

$$
\begin{array}{llll}
4+5-1=8 & 13-9+2=6 & 20-7+1=14 & 10+5-4=11 \\
10+3+2=15 & 9+3-2=10 & 8-2-1=5 & 13-8+1=6 \\
9-4-3=2 & 18-9-4=5 & 7+8+1=16 & 16-7+3=12 \\
14-6+4=12 & 12-5-2=5 & 19-10+5=14 & 6+5-3=8
\end{array}
$$

Learners must subtract using the pictures. Learners must pictures.

Learners solve the word problem. Answer: 9 sweets

Homework

- Complete question 4 for homework.

Reflection questions
Can learners do the following?

- Add up to 20
- Subtract from numbers up to 20
- Use appropriate symbols (+,-, =)

38 Addition and subtraction up to 50

Objectives

- Add up to 50
- Subtract from numbers up to 50
- Use appropriate symbols (,,$+-=$)

Resources

Teacher: Writing board, unifix cubes, place value number cards
Learner: Workbook page 78, pencil and colouring pencils

beads	counters	stones	unifix cubes

Dictionary

Addition: finding the total or sum by combining two or more numbers, e.g. $5+6=1,3+2+7=12$

The symbol for addition is

Subtraction: taking ane number away from another, e.g. 11-6=5
The symbol for subtraction is

Concrete

Give learners 50 unifix cubes.
Ask learners to put 3 unifix trains (30 cubes) and 7 cubes in front of them.

Ask them to place another unifix train and 3 cubes.

38 Addition and subtraction up to 50 cont...

Learners must recall the answers as fast as they can. Answers:

- 21 • 32 • 44•50
- 39 • 50 • $30 \cdot 50$
- 50 • $30 \cdot 48 \cdot 48$
- 23•25•40•30

Learners must add
using the pictures.

Learners must subtract using the pictures.

Learners solve the problem.
Answer: R37

Homework

- Do question 4 for homework

Reflection questions

Can learners do the following?

- Add up to 50
- Subtract from numbers up to 50
- Use appropriate symbols (+,-, =)

39a More addition

Objectives

- Add numbers up to 60
- Use drawings, number lines and concrete apparatus to solve addition problems

Resources

Teacher: Writing board, beads, place value number cards
Learner: Workbook page 80, pencil
Concrete resources:

| beads counters | stones | unifix cubes |
| :---: | :---: | :---: | :---: |

Dictionary

Addition: finding the total or sum by combining two or more numbers, e.g. $5+6=1,3+2+7=12$

The symbol for addition is

Subtraction: taking ane number away from another, e.g. 11-6=5
The symbol for subtraction is \square

Introduce the lesson

Concrete

Write the following on the board. $13+12=$ Learners show it with the beads.

Let us say it: $10+10+3+2=$ \qquad

Semi-abstract

Give each learner the following number cards.

\section*{| 10 | 20 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

In pairs ask them each to take a ten and any unit card.
What is the total of each card?
Do this with different combinations, do it always with a ten or twenty card plus any unit card.

39a More addition cont...

Learners add the numbers using the number line and beads. $13+12=\ldots$. Before doing the first one $(13+12=\ldots)$ with your learners, first count in multiples of ten, on the bead line, starting with 3 . Let us count: $3,13,23,33,43, \ldots$
Ask the learners to show where 13 is.
Then ask them to add 10 to 13 (Learners should recognise that 13 to 23 forms a pattern).
(One ten and 3 units now becomes two tens and 3 units $=23$) Then add the two beads at the end. Learners add 2 to 23 . Let us write it as $13+10+2=25$

Answers:

- $10+10+3+2=25$
- $10+10+4+2=26$
- $10+10+9+1=30$
- $10+10+6+3=29$
- $10+10+5+4=29$

Oral question

Learners add the following mentally.
$10+10+3+2$
$10+10+4+5$
$10+10+7+1$
Learners must add the numbers using the spaces given.

Term 2

39b More addition (continued)

Content links: 4, 5, 21, 23a-24, 39a-39b, 72-74, 77, 82, 100-102, 104-105 Grade 1 links: 15, 19-22, 25-26, 43, 45-46, 49-50, 53-57, 70-73, 81, 85, 90-91, 92, 102, 104, 112-113, 118
Grade 3 links: 5, 23-24, 27-28, 33, 35a-35bb, 37-39, 41-43, 45-47, 49, 73-75, 105, 108-109

Objectives

- Add numbers up to 60
- Recognise place value
- Use drawings, number lines and concrete apparatus to solve addition problems

Resources

Teacher: Writing board, beads
Learner : Workbook page 82, pencil and colouring pencils

Concrete resources:

Dictionary

Addition: finding the total or sum by combining two or more numbers, e.g. $5+6=1,3+2+7=12$

The symbol for addition is

Subtraction: taking ane number away from another, e.g. 11-6=5
The symbol for subtraction is

Introduce the lesson

Concrete
Give learners some beads (Should be in groups of ten)

Ask learners to show 8 beads.
Ask them to add 10.
Do a few activities like this using beads.
$7+10=$ \qquad
$5+10=$ \qquad
$9+10=$
$6+10=$ \qquad

Concrete

Do a similar activity with beads, adding:
$10+3+10+4=$
$10+5+10+2=$

Representational

Do a similar activity with beads, adding:
In pairs ask learners to show the sums using number cards.
$14+13=$
$16+12=$
$18+11=$

39b More addition (continued) cont...

Content links: 4, 5, 21, 23a-24, 39a-39b, 72-74, 77, 82, 100-102, 104-105 Grade 1 links: 15, 19-22, 25-26, 43, 45-46, 49-50, 53-57, 70-73, 81, 85 90-91, 92, 102, 104, 112-113, 118
Grade 3 links: 5, 23-24, 27-28, 33, 35a-35bb, 37-39, 41-43, 45-47, 49, 73-75, 105, 108-109

Ask learners what the total of each block is? Ask learners to explain each solution
Answers:

- Possible solution: 12 + $10=22$ or $10+2+10=22$
- Possible solution: $15+10=25$ or $10+5+10=25$
- Possible solution: $19+10=29$ or $10+9+10=29$

Learners must draw the rest of the beads and complete the addition sums.
Answers:

- $10+6+10+3=29$
- $10+7+10+2=29$
- $10+5+11+3=29$
- $10+3+10+1=24$

Learners must complete the addition sums using the example to guide them.
Answers:

- $44+2=46$
- $33+3=36$
- $45+2=47$
- $36+1=37$

Learners must add the sum. Learners should recognise adding 10 changes the tens to the next ten, e.g. $34+10=44$

Answers:

- $21 \cdot 33 \cdot 46$
- $38 \cdot 47 \cdot 22$
- $44 \cdot 39 \cdot 25$

Learners must add 27 and 16 and also draw a picture to show their answer.
Answer: 43 and draw a picture.
Learners must solve the word sum by drawing a picture. Answer: Learners must make their own word sum using the pictures.

Homework

- Complete questions 5 and 6 for homework

Reflection questions
Can learners do the following?

- Add numbers up to 60
- Recognise place value
- Use drawings, number lines and concrete apparatus to solve addition problems

Objectives

- Estimate, measure, compare, order and record length using nonstandard measures
- Use words such as short, long, high, low, tall to talk about length and height

Resources

Teacher: Writing board, unifix cubes
Learner : Workbook page 84, pencil, colouring pencils, scissors, Cut-out 1 Concrete resources:

Dictionary

Length: the distance from one end to the other end, e.g. length \longrightarrow Grade 2 length words are "shorter" and "longer".

Introduce the lesson

Concrete

Ask learners to make a unifix train.
Ask them to make a train that is shorter.

Ask them to make a train that is longer.

Take the unifix cubes and tell the learners to turn them so they look like buildings. First the 10 cube train and then the 6 cube train. Which one is shorter?
Which one is taller?
Do the same with the 6 cube train and the 12 cube train.

Concrete - body

Stand next to a friend.
Height: the distance from the top to the bottom, e.g. Grade 2 height words are "higher", "lower" and "taller". height

Who is the shortest?

40 Length continued

Content links: 10, 119

Oral questions
Find all the things in the class that are:

- Long. Why do you say it is long? - Short. Why do you say it is short?
- Tall. Why do you say it is tall?

Learners must measure the playground sides with the hand and the foot from Cut-out 1. Learners answer the questions: "How many hands long is the playground?"
"How many feet long is the playground?"
Answers: learner's own answers
Reflection questions
Can learners do the following?

- Estimate, measure, compare, order and record length using nonstandard measures
- Use words such as short, long, high, low, tall to talk about length and height

41 Subtraction

Content links: 5, 21, 23b, 42a-42b, 74, 77, 101-102, 104-105
Grade 1 links: 15, 20-22, 73, 77, 103-104
Grade 3 links: 5, 21 a-21b, 30, 33, 35b, 37b, 39, 41-42, 45-47, 73-75, 107-109

Objectives

- Subtract from numbers up to 50
- Recognise place value
- Use number lines

Dictionary

Number line: a line with numbers placed in their correct position (useful for showing relations between numbers, for addition and subtraction)

Teach subtraction

Concrete - body

Go outside and draw a number line up to 20 on the "ground".

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

Ask learners to jump from 0 to 14. Ask them to turn around and jump 4 back. On what number are you standing?

Resources

Teacher: Writing board, place value number cards, beads Learner: Workbook page 86, pencil, colouring pencils

Representational

Ask learners to make the following using number cards
What should I do to get an answer of 10?

Make the 12 again. What should I remove to get an answer of 2 ?

Use the number cards, and do the same for: $11,15,18$ and 19

Learners must use the number line and beads, and write a subtraction sum.
Answers:

- 14-4 = 10 Count 14 beads, 10, 11, 12, 13, 14.

Minus 4 means you go 4 back.

- 16-6 = 10 Count 16 beads, $10,11,12,13,14,15,16$. Minus 6 means you go 6 back.

41 Subtraction continued

Content links: 5, 21, 23b, 42a-42b, 74, 77, 101-102, 104-105
Grade 1 links: 15, 20-22, 73, 77, 103-104
Grade 3 links: 5, 21 a-21b, 30, 33, 35b, 37b, 39, 41-42, 45-47, 73-75, 107-109

- 18-8 = 10 Count 18 beads, 10, 11, 12, 13, 14, 15, 16, 17, 18.

Minus 8 means you go 8 back.

- 13-3 = 10 Count 13 beads, 10, 11, 12, 13.

Minus 3 means you go 3 back.

Learners must subtract using the number cards.
Answers:
$10+3-3=10$
$10+5-5=10$
$10+1-1=10$
$10+4-4=10$
$10+9-9=10$
$10+2-2=10$
$10+7-7=10$
$10+6-6=10$
$10+8-8=10$
$10+9-5=14$

(6)

Learners must subtract using the number cards. Answer:

Term 2

42a More subtraction

Objectives

- Subtract from numbers up to 50
- Recognise place value
- Use number lines

Resources

Teacher: Writing board, place value number cards, beads
Learner: Workbook page 88, pencil, colouring pencils

Dictionary

Subtraction: taking ane number away from another, e.g. 11-6 = 5
The symbol for subtraction is

Teach subtraction 0-50

Representational (semi-abstract)

Count backwards:
Draw a number line outside from 0 - 30. Ask learners to stand on 25. Ask
them to walk ten steps backwards. On what number are you? Walk another two steps backwards. On what number are you? Do the same with $26-14$. Stand on 26 , walk 10 steps back and again 4 steps.

Representational (semi-abstract)

Learners work in pairs. The first learner takes a 20 and a 7 number card. The second learner takes a 10 and a 2 number card. The second learner subtracts his or her number cards from the first learner's cards.

Abstract

On their desks ask learners to show 27-12 = with their number cards. They then minus the cards.

Learners must subtract the bottom numbers from the top numbers.

10		20		30		40	
7	17	2	22	8	38	9	49
10		10		10		10	
5	15	1	11	5	15	4	14
	2		11		23		35

42a More subtraction continued

Content links: 5, 21, 23b, 41, 74, 77, 101-102, 104-105
Grade 1 links: 15, 20-22, 73, 77, 103-104
Grade 3 links: 5, 21 a-21b, 30, 33, 35b, 37b, 39, 41-42, 45-47, 73-75

Homework

- Bonds 5-10
- Complete question 3

Reflection questions
Can learners do the following?

- Subtract from numbers up to 50
- Recognise place value
- Use number lines

42b Even more subtraction

Objectives

- Subtract from numbers up to 50
- Recognise place value
- Use number lines

Resources

Teacher: Writing board, place value number cards, beads
Learner: Workbook page 90, pencil, colouring pencils
Concrete resources:

Dictionary

Subtraction: taking ane number away from another, e.g. 11-6=5
The symbol for subtraction is

Teach subtraction 0-50

Concrete

Give learners 30 beads.
000000000000000000000000000000
Ask them to put their finger on 25. Ask them to count back 10. On what number are you?
Count another 10 back. On what number are you?
Do the same with $21,22,23,24,26,27,28$ and 29.
Representational (semi-abstract)
Draw a number line 0-30 on the board. Ask a learner to come to the front of the class.

0123456789101112131415161718192021222324252627282930
Ask the learner to put his or her finger on 25 ? Count 10 back. On what number are you now?
Do the same with $21,22,23,24,26,27,28$ and 29
Representational (semi-abstract)
Learners use number cards and place the following on their tables. 46-13

Do a few examples like this.

42b Even more subtraction continued

Learners must complete the sums mentally.

- 46-13 = 33 • 38-14 = 24 - 25-11 = 14
- $49-23=26 \cdot 27-16=11 \cdot 46-32=14$

Learners must minus 10 from each number.
Answers

- $21-10=11 \cdot 43-10-33 \cdot 16-10=6$
- $28-10=18 \cdot 27-10=17 \cdot 22-10=12$
- $34-10=24 \cdot 37-10=27 \cdot 45-10=35$

Learners should solve the
word problem by drawing a picture.
Learners must make their
own word sum using the pictures.

Reflection questions
Can learners do the following?

- Subtract from numbers up to 50
- Recognise place value
- Use number lines

Objectives

- Estimate, measure, compare, order and record mass using a scale and using non-standard measures
- Use words such as heavy and light to talk about mass

Resources

Teacher: Writing board, heavy and light objects
Learner : Workbook page 92, pencil and coloured pencils and pictures

Dictionary

Mass: A measure of how much matter is in an object. This gold bar is quite small but has a mass of 1 kilogram, so it contains a lot of matter.
Weight: how heavy something is when you pick it up
Mass and weight: In everyday English these two words as if they are the same. But there is a scientific difference. The mass of an object is a measure of how much matter it contains (the more matter there is the more force it will take to move it). The weight of an object changes according to gravity. An object is weightless in outer space even though it has the same mass as it has on Earth. You do not need to explain this distinction in Grade 2. Nor do you need to explain why you can only measure mass on a balance scale and that spring scales (bathroom scales, kitchen scales) only measure weight. But you need to say that we use the special word "mass" when we are talking about how much stuff or matter there is in an object.

43 Heavy and light continued

Answer: Learners must paste or draw pictures of heavy and light objects.

The yellow shows the object is light and blue shows the object is heavy. Learners must write light or heavy.

(Learners answers may differ on the bag. E.g. it is heavy with books and light without books).

Oral questions

What does heavy mean?
What does light mean?

Learners must draw or paste objects according to what the scale shows.

Answers: Learners' own pictures.

Homework

- Find 3 pictures of things that are heavy. Ask your parents/care giver to write why you say it is heavy. Do the same with 3 light pictures.

Reflection questions

Can learners do the following?

- Estimate, measure, compare, order and record mass using a scale and using non-standard measures
- Use words such as heavy and light to talk about mass

44 Number patterns: Twos

Objectives

- Complete, extend and describe simple number patterns in twos from any multiple of two between 0 and 100

Resources

Teacher: Number boards, beads or counters, magazines
Learner: Workbook page 94, pencil, colouring pencils, scissors, glue
magazines
Concrete resources:

Teach number patterns 0-50

Counting

Let us count in twos: $2,4,6, \ldots$ up to 100.
Representational and concrete
Give each learner a
number board.
Ask learners to put
a counter on 2, 4, 6, 8, 10 .
Ask them to fill in the rest
of the board.

| beads counters | stones | unifix cubes |
| :---: | :---: | :---: | :---: |

Dictionary

Pattern: things that are arranged following a rule or rules
Twos: e.g. the rule is two
2, 4, 6, 8, 10, ...
$12,10,8,6,4,2, \ldots$
1,3,5, 7, 9,

Concrete

Ask the learners to pack
away the number board.
Use the beads or counters
to set out the pattern that
was on the board.

44 Number patterns: Twos continued

	Ask the learners to look at the picture. What do you see? Let us count in twos.									
	Learners draw or paste pictures of things that come in twos Learners complete the pattern on the number board. Complete it.									
	1	2	3	4	5	6	7	8	9	10
	11	12	13	14	15	16	17	18	19	20
	21	22	23	24	25	26	27	28	29	30
	31	32	33	34	35	36	37	38	39	40
	41	42	43	44	45	46	47	48	49	50
	51	52	53	54	55	56	57	58	59	60
	61	62	63	64	65	66	67	68	69	70
	71	72	73	74	75	76	77	78	79	80
	81	82	83	84	85	86	87	88	89	90
	91	92	93	94	95	96	97	98	99	100

Oral questions

Count in twos from 2-100 both forwards and backwards.
Learners use the number lines to write a pattern. Answers:
•10, 12, 14, 16, 18, 20

Homework
Learners must complete question 5.

Reflection questions

Can learners do the following?

- Complete, extend and describe simple number patterns in twos from any multiple of two between 0 and 100

Objectives

- Double numbers from 0 - 10

Resources

Teacher: Writing board, counters
Learner: Workbook page 96 , pencil and colouring pencils
Concrete resources:

Dictionary

Introduce doubling numbers from 0-10

Concrete

Tell learners to take 2 counters. Ask them to double the counters. Look and see if learners add another two counters.

Ask learners to place: 1 counter on their desks. Double it.

- 3 counters on their desks. Double them.
- 4 counters on their desks. Double them.
- 5 counters on their desks. Double them.

Semi-abstract

Draw the following on the board:

How many apples are in the first block? How many apples are in the second block? We can say: Double 3 or 2×3
Give them more examples using double 2,4 , and 5 .

Ask learners to look at the pictures and ask "What happened?"

Answer: Everything doubled

45 Double continued

Content links: 46-48, 86-87 Grade 1 links: $26,45-48,85,122$
Grade 3 links: 6, 61-62

Oral questions

Ask the learners to do tasks such as:

- Add 2 squares and 2 squares.
- Add 4 circles and 4 circles.
- Add 5 triangles and 5 triangles.

Rellection questions
Can learners do the following?

- Double numbers from 0-10

46 Double again

Objectives

- Double numbers from 0-20

Resources

Teacher: Writing board, counters
Learner: Workbook page 98, pencil and colouring pencils
Concrete resources

Dictionary

Double: make twice as big
Multiply by 2 : e.g. double 6 is 2

Representational
Draw the following on the board:

How many apples are in the first block?
How many apples are in the second block?
We can say: Double 7 or 2×7
Give them more examples with double 6, 8,9 and 10.

46 Double again continued

	Ask learners to look at the first of the number lines. What numbers do you see? $(\mathbf{2}, 4,6,8,10,12,14,16,18,20)$. What number is between 2 and 4 ? (3) 10 and 12? (11) 18 and 20? (19) Learners use the number lines to write sums. Answers: - $6+6=12$ - $9+9=18$ - $8+8=16$ - $7+7=14$ - $10+10=20$
	Learners must double the following numbers. - $6+6=12,2 \times 6=12$ - $7+7=14,2 \times 7=14$ - $8+8=16,2 \times 8=16$ - $9+9=18,2 \times 9=18$ - $10+10=20,2 \times 10=20$
	My friend has 9 marbles, I have to double that. How many marbles do I have? Answer: 18
Homework - Complete the last 2 sums of question 4	
Reflection questions Can learners do the following? - Double numbers from 0-20	

47 Double up

Objectives

- Double numbers from 0-40

Resources

Teacher: Writing board, counters, beads, unifix cubes
Learner: Workbook page 100, pencil, colouring pencils
Concrete resources:

Dictionary

Double: Double 7 is 14 , e.g. $7+7=14$ or $7 \times 2=14$.
Double 14 is 28 , e.g. $14+14=28$ or $14 \times 2=28$.

Introduce doubling numbers from 0-40

Concrete

Give learners beads or unifix cubes. Ask learners to place 10 blue beads and 2 red beads in a row in front of them.

Concrete

How many beads do you have? Double the beads.
:88:8:8:8:8:8:
Count the beads. Encourage learners to say double 10 is 20 (count 10, 20) and double 2 is 4.20 and 4 equals to 24 .
Do a few more. Double 11, 13, 14 and 15.
Give learners unifix cubes. Ask them to take 20 blocks of the same colour and another 10 of a different colour.
Ask learners to show double 12. Double $10+$ double 2; this is $20+4=24$

Do a few more. Double 11, 13, 14 and 15.

Workbook introduction: Ask the learners, "How will the beads help us to double 10?"

Double 8

$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 1 & 2 & 3 & 5 & 6 & 7 & 8\end{array}$
000000000000000000000001121416
12345678910111213141516
Double 9
$\begin{array}{llllllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$
1234564890101112131415161718
1234456789101112131415161718

Answers:

- Double 6: $6+6=12,2 \times 6=12$
- Double 7: $7+7=14,2 \times 7=14$
- Double 8: $8+8=16,2 \times 8=16$
- Double 9: $9+9=18,2 \times 9=18$

Oral questions

Double 13 is equal to $10+10+$ \qquad $+$
\qquad $+$
Double 14 is equal to $10+10+$
\qquad $+$
Double 16 is equal to $10+10+$ \qquad $+$

Learners must double the numbers.

Answer:

- Double 7: $7+7=14,2 \times 7=14$
- Double 9: $9+9=18,2 \times 9=18$
- Double 6: $6+6=12,2 \times 6=12$
- Double 8: $8+8=16,2 \times 8=16$
- Double 10: $10+10=20,2 \times 10=20$

Learners must double 8. Answer: 16
Reflection questions
Can learners do the following?

- Double numbers from 0-40

48 More doubling

Objectives

- Double numbers from 0-40.

Resources

Teacher: Writing board, beads, unifix cubes
Learner: Workbook page 102, pencil, colouring pencils
Concrete resources:

Dictionary

Double: 21 is 42 , e.g. $21+21=42$ or $21 \times 2=42$

Introduce further doubling of numbers

Concrete

Give learners beads or unifix cubes. Ask learners to place 20 blue beads

Concrete

How many beads do you have? Double the beads.

Count the beads. Encourage learners to say double 20 is 40 (count 20, 40) and double 2 is 4.40 and 4 equals to 44 .
Do a few more. Double 21, 23, 27 and 34.
Give learners unifix cubes. Ask them to take 30 blocks of the same colour and another 10 of a different colour.
Ask learners to show double 17. Double $10+$ double 7 ; this is $20+14=34$ Do a few more. Double 24, 25 and 26.

Learners must use the beads to double the numbers. We started the first one for you.
Answers:

- Double 13: 13 + 13 = 26

- Double 15: $15+15=30$
- Double 14: $14+14=28$
- Double 11: 11 + 11 = 22
- Double 16: $16+16=32$

Learners must double the numbers, colour the base ten blocks to show their answer. They then write an addition and multiplication sum for each.
Double 112

Answers:

- Double 11: 11 + 11 = 22, $2 \times 11=22$
-Double 13: $13+13=26,2 \times 13=26$
- Double 14: $14+14=28,2 \times 14=28$
- Double 15: $15+15=30,2 \times 15=30$

Oral questions

Double 13 is equal to $10+10+$ \qquad $+$

Double 14 is equal to $10+10+$
Double 15 is equal to $10+10+$ \qquad $+$
Double 16 is equal to $10+10+$ \qquad $+$

Learners must double the numbers. Answer:

- Double 11: $11+11=22,2 \times 11=22$
- Double 13: $13+13=26,2 \times 13=26$
- Double 16: $16+16=32,2 \times 16=32$
- Double 17: $17+17=34,2 \times 17=34$
- Double 18: $18+18=36,2 \times 18=36$

Learners must double the 14.
Answer: 28

Reflection questions
Can learners do the following?

- Double numbers from $0-40$?

49 Containers and capacity

Objectives

- Describe the capacity of a container using the words, full, empty and half full

Resources

Teacher: Writing board, containers of different sizes, liquid Learner: Workbook page 104, containers of different sizes

Dictionary

Full: Note that with containers with measurement marks the container may be considered 'full' when the highest measurement mark is reached even though the container is not full to the brim. The same applies to cold drinks where the unopened bottle is not filled right to the top but is considered 'full'.

Introduce empty and full

Concrete

Place 10 containers on your table. Fill five and keep 5 empty. Write the words full and empty on the board.

Ask learners to show which containers are full and which are empty.

Grade 3 links: 14, 128-128b

Oral question

-What does empty mean?

- What does full mean?

Answer: Learners draw their own containers using full and empty.

Homework

Ask your parents or caregiver to help you identify 10 containers in your home. Say if they are full or empty. Discuss this the following day in class.

Reflection questions

Can learners do the following?

- Describe the capacity of a container using the words, full, empty and half full

50 Multiplication: x 3

Objectives

- Add the same number repeatedly
- Multiply numbers from $1-10$ by 3

Resources

Teacher: Writing board, counters
Learner: Workbook page 106, pencil and colouring pencils

Concrete resources:

beads	counters	stones	unifix cubes

Dictionary

Multiplication: Multiplication is repeated addition.
e.g. $3+3+3+3=4 \times 3=12$

Teach 3 x table

Concrete

Go outside: Draw a number line from 0 - 30. Ask the learners to jump in threes to the end.
How many times did you jump?
Stand on zero jump 4 jumps in 3s. On what number are you?
Stand on zero jump 6 jumps in 3s. On what number are you?

Concrete

Give learners 30 counters each. Ask them to take 3 counters and place them in front of them. This is group 1. Take another 3 counters, this is group 2. Take another 3 counters, this is group 3 . Let us look at your counters.
\therefore \therefore
\therefore

We can say each group has 3 counters. Let us count the counters in groups: 3, 6,9
Let us make an addition sum: $3+3+3=9$
Let us make an multiplication sum: $3 \times 3=9$
Do the same with:
00800000000

50 Multiplication: x 3 continued

Learners must complete questions on grouping, repeated addition and multiplication.
Answer: • 6 • 15•12•18•21
Ask the learners to make drawings of the groups.

- Child draws 3, 3, 3 counters

000000000

- Child draws 3, 3, 3, 3 counters
$000000 \quad 000 \quad 000$
- Child draws 3, 3, 3, 3, 3 counters 000000000000000

Oral question

Give a multiplication sum for:

- $3+3+3+3+3+3$
- $3+3+3+3$

Learners must make a drawing of the number lines and complete the sums. The first drawing of counters is given to the
 learners.
Answers:

- 15, 18
- 18

18

- 12, 18
- $6+6+6=18$
- $3 \times 6=18$
- Learner draws own picture of 18 counters.

Homework

- Do question 5 for homework.

Reflection questions

Can learners do the following?

- Add the same number repeatedly
- Multiply numbers from 1 - 10 by 3

51 Number patterns: Threes

Content links: 44, 53, 56, 80, 89, 112, 117

Objectives

- Copy, extend and describe simple number patterns in 3s from any multiple of 3 between 0 and 99

Resources

Teacher: Number boards, beads or counters, magazines
Learner: Workbook page 108, pencil, colouring pencils, scissors, glue,
magazine
Concrete resources:

beads or abacus	counters	stones	unifix cubes

Dictionary

Patterns: things that are arranged following a rule or rules Threes: e.g. the rule is 3 :
$3,6,9,12,15, \ldots$ Three is added to the previous number. $15,12,9,6,3, \ldots$ Three is subtracted from the previous number.

51 Number patterns: Threes cont...

Grade 1 links: None

Ask the learners to look at the picture. What do you see. Let us count in threes.

Learners must draw or paste pictures of things that come in threes.

Learners must complete the pattern on the number board.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Homework

- Learners must do question 5 .

Reflection questions

Can learners do the following?

- Copy, extend and describe simple number patterns in 3 s from any multiple of 3 between 0 and 99

52 Multiplication: x 4

Content links: 29-31, 50, 54, 83-84, 88, 113-115 Grade 1 links: None
 Grade 3 links: $28,55,85,87,89,120$

Objectives

- Add the same number repeatedly
- Multiply numbers from 1 - 10 by 4

Resources

Teacher: Writing board, counters
Learner: Workbook page 110, pencil and colouring pencils

Concrete resources:

beads	counters	stones	unifix cubes

Dictionary

Multiplication: Multiplication is repeated addition.
E.g. $4+4+4=3 \times 4=12$

Fours: e.g. 4, 8, 12, 16, 20,

Teach $4 \times$ table

Concrete

Go outside: Draw a number line from 0 - 40. Ask the learners to jump in
fours to the end.
How many times did you jump?
Stand on zero, jump 4 jumps in 4 s . On what number are you?
Stand on zero, jump 6 jumps in 4s. On what number are you?

Concrete

Give learners 40 counters each. Ask them to take 4 counters and place them infront of them. This is group 1. Take another 4 counters, this is group 2. Take another 4 counters, this is group 3 . Let us look at your counters.
:
: : :

We can say each group has 4 counters. Let us count the counters in groups: 4, 8, 12
Let us make an addition sum: $4+4+4=12$
Let us make an multiplication sum: $3 \times 4=12$
Do the same with:

52 Multiplication: x 4 continued

	Learners must complete questions on grouping, repeated addition and multiplication. Answers: • 12 • $8 \cdot 16 \cdot 24 \cdot 28$
	Ask the learners to make a drawing of each group. Answers:
	$\begin{array}{lll} 00 & 00 & 00 \\ 00 & 00 & 00 \end{array}$
	00 00 00 00 00 00 00 00
	00 00 00 00 00 00 00 00 00 00
Oral question - Give a multiplication sum for: - $4+4+4$ - $4+4+4+4$	

Content links: $44,51,56,80,89,112,117$

53 Number patterns: Fours

Objectives

- Copy, extend and describe simple patterns in 4 s from any multiple of 4 between 0 and 100

Resources

Teacher: Number boards, counters, magazines
Learner: Workbook page 112, pencil, colouring pencils, scissors, glue,
magazines
Concrete resources:

| beads counters | stones | unifix cubes |
| :--- | :--- | :--- | :--- |

Dictionary

Patterns: things that are arranged following a rule or rules
Fours: e.g. the rule is 4:
$4,8,12,16,20, \ldots$ Four is added to the previous number.
$24,20,16,12,8,4, \ldots$ Four is subtracted from the previous number.

ntroduce counting in fours

Counting

Let us count in fours: $4,8,12, \ldots$ up to a 100.

Semi-abstract and concrete

Give each learner a number board. Ask learners to put a counter on
4, 8, 12, 16, 20. Ask them to complete the rest of the board.

Concrete

Ask the learners to put away their number board. Use only the counters to repeat the pattern that was on the board.

54 More multiplication stories

Objectives

- Multiply numbers from 1 to 10 by 2,4 and 5
- Solve word problems in context and explain own solutions to these problems involving repeated addition and multiplication up to 30

Resources

Teacher: Writing board, counters
Learner: Workbook page 114, pencil and colouring pencils

Concrete resources:

Dictionary
Multiplication: Multiplication is repeated addition.
E.g. $2+2+2=3 \times 2=6$

Introduce 2 x table

Concrete - Body

Ask a learner to stand in front of the class.

- How many eyes do you count?
- How many legs do you count?
- How many hands do you count?
- How many feet do you count?

Ask 2, then 3, then 4 and then 5 learners to stand
in front of the class. Ask the class the same questions.

Concrete

Ask 2, 3, 4, 5 learners to stand in front of the class. Give each learner 20 counters. Point to the learners in front of the class. Show the number of eyes using the counters, e.g. five learners will look like this.

-○ ○○ ○○ ○○ - ○

Do the same with legs, hands and feet.
Representational/semi-abstract
Ask the learners to make a drawing of their counters on the board. Draw a number line from 0-20 on the board.

Learners to count in twos and show the number of eyes on the number line.

54 More multiplication stories cont.

Learners must look at the picture. Ask questions such as: A cat has 2 eyes. How many eyes do 4 cats have? Learners must: Colour the cats' eyes. Show it with counters. Show it on a number line. Answers:

- 8 eyes
- The learner colours in the eight counters.
- The learner draws 8 beads on the number line
- $2+2+2+2=8$ and $2 \times 4=8$

Ask the learners to look at the picture of the tricycles. Ask questions: A tricycle has 3 wheels. How many wheels do 5 tricycles have? Colour the tricycle wheels. Show it with counters. Show it on a number line.

Answer:

- 15 wheels
- The learner colours the wheels.
- The learner draws 3, 3, 3, 3, 3 counters
- The learner draws beads on the number line
- $3+3+3+3+3=15$ and $5 \times 3=15$

Ask the learners to look at the picture of the dogs. Ask questions: A dog has 4 legs. How many legs do 4 dogs have? Colour the dogs' legs. Show it with counters. Show it on a number line.

Answers:

- 16 legs
- The learner colours the legs.
- The learner draws 4, 4, 4, 4 counters
- The learner draws beads on the number line
- $4+4+4+4=16$ and $4 \times 4=16$

Oral questions

Let us count in:
2s: $2,4,6,8,10,12,14,16,18,20$.
3s: $3,6,9,12,15,18,21,24,27,30$.
$4 \mathrm{~s}: 4,8,12,16,20,24,28,32,36,40$.

Homework

- Learners find pictures with objects in twos, threes and fours.

Reflection questions

Can learners do the following?

- Multiply numbers from 1 to 10 by 2,4 and 5
- Solve word problems in context and explain own solutions to these problems involving repeated addition and multiplication up to 30

55 Hours

Content links: 13, 57a-57b, 81a-81b, 85a-85b, 89 Grade 1 links: None
Grade 3 links: $12,32,54,80,106$

Objectives

- Tell the time in hours on analogue clocks

Resources

Teacher: Writing board, big analogue clock (made from old cardboard).
Learner: Workbook page 116, pencil, colouring pencils.

Dictionary

Analogue clock: a clock that has a circular clock face or dial with the numbers 1 to 12 marked round it representing the hours and a short hand whose movement indicates the hours passing over a twelve hour period. A longer hand moves round the circular face every hour and the minutes passed are represent by 60 small marks.
Hour: A period of time of which there are 24 in the day. There are 60 minutes in a hour.
Short hand: the shorter of the two main hands on an analogue clock face dial which measures the hours. The short hand rotates around the dial once every 12 hours
Counting in hours: There are two ways of counting in hours. We can count with 24 hours, starting at midnight (00:00 and ending at midnight (24:00). We can also count with two periods of 12 hours. The first 12 hour period is from midnight (12:00 a.m.) till noon (12:00 p.m.) and from noon till midnight. The abbreviation a.m. means before midday and p.m means after midday.

Introduce hours

Concrete
 Analogue clock

Make your own clock using old cardboard.
Point to the numbers on the clock.
Learners count in hours:
$1,2,3,4,5,6,7,8,9,10,11,12$.
Make a short hand and stick it to the clock
using a split pin. Move the hand and count
in hours again. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 .

Learners look at the picture and discuss it.

The short hand shows us the hours. Here it shows 7 hours.

The hand on the clock goes round and round Round and round, round and round.
The hand on the clock goes round and round To tell us the time.

55 Hours continued

Content links: 13, 57a-57b, 81a-81b, 85a-85b, 89 Grade 1 links: None
Grade 3 links: 12, 32,54, 80, 106

为
Learners say what can take an
hour? Learners must colour in the correct answer. Answer: Doing homework

Homework

- Complete question 4 for homework.

Reflection questions

Can learners do the following?

- Tell the time in hours on analogue clocks

56 Number patterns: Fives

Objectives

- Copy, extend and describe simple number patterns in 5 s from any multiple of 5 between 0 and 100

Resources

Teacher: Number boards, beads or counters, magazines
Learner: Workbook page 118, pencil, colouring pencils, scissors, glue, magazines
Concrete resources:

| beads counters | stones | unifix cubes |
| :---: | :---: | :---: | :---: |

Dictionary

Patterns: things that are arranged following a rule or rules
Fives: e.g. the rule is 5:
$5,10,15,20,25, \ldots$ Five is added to the previous number.
$35,30,25,20,15, \ldots$ Five is subtracted from the previous number.

Introduce counting in fives

Counting

Let us count in fives: $5,10,5, \ldots$ up to a 100.

Representational and concrete

Give each learner a number board.
Ask learners to put a counter on
$5,10,15,20,25$. Ask them to place
counters on the rest of the board
which are "counting in fives" numbers.

Concrete

Ask the learners to put away their number board. Use the counters to repeat the pattern that was on the board.

56 Number patterns: Fives continued

Content links: $44,51,53,80,89,112,117$
Grade 1 links: 58-59, 83-84, 115
Grade 3 links: $9,29,47,64,76,79,82,86,88,111,114,116,119,121$

Homework
Learners must do question 5 .

Reflection questions

Can learners do the following?

- Copy, extend and describe simple number patterns in 5s from any multiple of 5 between 0 and 100

57a Minutes

Objectives

- Tell the time in minutes on analogue clocks

Resources

Teacher: Writing board, big analogue clock made from cardboard
Learner: Workbook page 120, pencil, colouring pencils

Dictionary

Minute: A minute is a period of time of which there are 60 in an hour. There are 60 seconds in a minute.
Long hand: this is the longer of the two main hands on an analogue clock face dial which measures the minutes. The long hand rotates around the dial once every hour.
Counting in minutes: There are two ways of counting the minutes on a clock face.
Each of the 60 small marks represents one minute.
Each of the numbers on the clock face (which represent the hours), can also be used to count each five minutes (so the 1 represents five minutes, the 2 represents ten minutes, and so on, until one is back at the number 12 which represents a full sixty minutes).

Introduce minutes

Concrete

Analogue clock
How many minutes are in an hour? Let us count: $1,2,3$, up to 60 . Point to minutes on the clock. The long hand shows us the minutes.
Move the long hand to 1 . This shows us 5 minutes,
An easy way to count in minutes is in fives.
Move the long hand to 1 and say 5 , move to 2 and
say 10 , move to 3 and say $15, \ldots$, move to 12 and say 60.
Now move the short hand to 1 . This shows us 1 hour. Let us count the hours: $1,2,3$ up to 12 .

57a Minutes continued

Oral questions
Let us count in fives: $5,10,15,20,25,30,35,40,45,50,55,60$

Learners must write down the numbers in the red squares here. Answers:

Learners must make a drawing of things you can do in the squares.

Homework

- Bonds $5-10$
- Complete question 4 for homework

Reflection questions

Can learners do the following?

- Tell the time in minutes on analogue clocks

57b More minutes

Objectives

- Tell the time in minutes on analogue clocks

Resources

Teacher: Writing board, big analogue clock made from cardboard Learner: Workbook page 122, pencil, colouring pencils

Dictionary

Minute: A minute is a period of time of which there are 60 in an hour. There are 60 seconds in a minute.
Long hand: this is the longer of the two main hands on an analogue clock face dial which measures the minutes. The long hand rotates around the dial once every hour.
Counting in minutes: There are two ways of counting the minutes on a clock face.
Each of the 60 small marks represents one minute.
Each of the numbers on the clock face (which represent the hours), can also be used to count each five minutes (so the 1 represents five minutes, the 2 represents ten minutes, and so on, until one is back at the number 12 which represents a full sixty minutes).

Introduce minutes

Analogue clock

Ask the learners to come to the front of the class and show the following by moving the hand. Which hand do I need to move to show minutes?
$5 \mathrm{~min}, 10 \mathrm{~min}, 25 \mathrm{~min}, 50 \mathrm{~min}, 20 \mathrm{~min}, 40 \mathrm{~min}, 30 \mathrm{~min}$, $15 \mathrm{~min}, 45 \mathrm{~min}, 55 \mathrm{~min}, 35 \mathrm{~min}, 60 \mathrm{~min}$.

57b More minutes continued

What can take one minute? Colour the correct picture/s. Answer: all

Homework

- Learners do question 4 for homework.

Reflection questions
Can learners do the following?

- Tell the time in minutes on analogue clocks

58 Grouping and sharing

Objectives

- Share numbers or objects from 0-50 in equal groups (and remainders)
- Solve number problems that involve equal sharing and grouping in context and explain own solutions

Resources

Teacher: Writing board, unifix cubes, counters
Learner: Workbook page 124, pencil and colouring pencils

Dictionary

Group: divide items/objects into
equal groups (sets), e.g. 3 groups of 10

Teach grouping and sharing from 0-40

Concrete

In pairs, give learners 4 trains of unifix cubes.

Share it between two. (Each learner will get 2 trains of unifix cubes) Groups of 20. We have 2 groups of 20.

In pairs, give learners 4 trains of unifix cubes and 8 small cubes.

Share it between two. (Each learner will get 2 trains of unifix cubes and 4 small cubes each.)
In pairs, give learners 3 trains of unifix cubes.
凹 U U U U U U
Share it between two. (Each child will get 1 train and a half train (5 small cubes) each. We now have 2 groups of 15 cubes.
In pairs, give learners 3 trains and 4 small cubes.
Share it between two. (Each child will get 1 train and 5 small cubes +2 small cubes.

Groups of 17 . We have 2 groups of 17 .

58
 Grouping and sharing
 continued

Ask learners how many blocks are in each circle? Learners must write the total in the blue circle and a multiplication sum for each. Answers:

- Total in blue circle is $30,10 \times 3=30$
- Total in blue circle is $24,12 \times 2=24$
- Total in blue circle is $40,10 \times 4=40$

Learners must share the blocks between the circles. Learners write a division sum for each. Answers.

- Child draws 9 in one circle and 9 in the other $18 \div 2=9$
- Child draws 8 counters in each circle $24 \div 3=8$

Oral questions

- What is 3 groups of 10 blocks?
- What is 2 groups of 13 blocks?
- Share 14 blocks between 2
- Share 26 blocks between 2

Learners must draw the groups and write a sum for each.

Plus sum: $2+2+2=6$ and times sum: $3 \times 2=6$
:::::8::8:8:8:8::
Plus sum: $14+14=28$ and times sum: $2 \times 14=28$

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
 Minus sum: 12-3-3-3-3=0 and division sum: $12 \div 4=3$

:::::::::::: :

Minus sum: 30-10-10-10=0 and division sum: $30 \div 3=10$

Learners must calculate the groups.

Answers:

- 2 groups of 7: 14
- 4 groups of 5: 20
- Share 18 by 2: 9
- Share 35 by 5: 7

Learner needs to multiply 6 by 5 .
Answer: 30 children

Homework Learners do question 5.

Rellection questions

Can learners do the following?

- Share numbers or objects from $0-50$ in equal groups (and remainders)
- Solve number problems that involve equal sharing and grouping in context and explain own solutions

59 More grouping and sharing

Objectives

- Share numbers or objects from $0-50$ in equal groups (and remainders)
- Solve number problems that involve equal sharing and grouping in context and explain own solutions

Resources

Teacher: Writing board, unifix cubes, counters
Learner: Workbook page 126, pencil, colouring pencils

Dictionary

Group: divide items/objects into equal groups (sets), e.g. 4 groups of 12

Share it between two (each child will get 15 counters).

$\because: \because: \bullet \bullet: \%$

Do the same with 36.

Learners must share the blocks between the children.

Answers:

- 44 blocks and each gets 22
- 28 blocks and each gets 14
- 36 blocks and each gets 18

59 More grouping and sharing cont...

Ask learners how many counters are in each circle? Learners must write the total in the blue circle and a multiplication sum next to it.
Answers:

- 30 in the blue circle, $10 \times 3=30$
- 24 in the blue circle, $12 \times 2=24$
- 36 in the blue circle, 9 x $4=36$

Learners must divide the counters in the blue circle and write a division sum for each.
Answers:

Learners must draw the groups. They then write a plus, times or minus and division sum for each.
Answers:

- Plus sum: $12+12+12=36$ and times sum: $12 \times 3=36$

	- Plus sum: $10+10+10+10+10=50$ and times sum: $5 \times 10=50$ - Minus sum: 24-4-4-4-4-4-4 and division sum: 24 $\div 4=6$ - Minus sum: 25-5-5-5-5-5 and division sum: 25 $\div 5=5$ Learners must calculate the groups. Answers: 2 groups of 11 is 22 3 groups of 10 is 30 4 groups of 4 is 16 2 groups of 25 is $\mathbf{5 0}$ Share 20 by 2: 10 Share 27 by 3: 9 Share 50 by 5: 10 Share 28 by 2: 14
	Trace the words double share

Homework

- Do
question 5 for homework.

Rellection questions

Can learners do the following?

- Share numbers or objects from $0-50$ in equal groups (and remainders)
- Solve number problems that involve equal sharing and grouping in context and explain own solutions

60

Yet more grouping and sharing
Content links: 5, 58-59, 61-63, 88, 110, 113, 118, 121

Objectives

- Share numbers or objects from 0-50 in equal groups (and remainders)
- Solve number problems that involve equal sharing and grouping in context and explain own solutions

Resources

Teacher: Writing board, counters
Learner: Workbook page 128, Cut-out 4 (Worksheet 60 section), scissors, glue, pencil and colouring pencils.
Concrete resources:

| beads counters | stones | unifix cubes |
| :---: | :---: | :---: | :---: |

Dictionary

Group: divide items into equal groups (sets), e.g. 9 groups of 2

Teach grouping and sharing

Concrete

In pairs learners take 4 counters. Share the counters between the two of you. How many counters will you each get?

We have 2 groups of 2 each.

Do the same with 6-20 counters, sharing it between 2 .
In groups of 4 learners take 8 counters. Share the counters between 4 of you. How many counters will you each get?
$088:$

Groups of 2. We have 4 groups of 2 .

Ask the learners to look at the pictures. Ask learners: "How many counters are in each circle?" Learners must share it
between two children.
Answers:

- 4 counters and each gets 2
- 12 counters and each gets 6
- 18 counters and each gets 9

Content links: 5, 58-59, 61-63, 88, 110, 113, 118, 121
Grade 1 links: 29-30, 49, 52, 54, 56, 80-84, 90-92, 112-114, 117-118, 120
Grade 3 links: 2, 16, 30a-30b, 31, 34-36, 63, 78, 81, 83-85, 87, 92-93, 126

Ask learners how many counters are in each circle? Learners write the answer down.
Answers: 8, 10, 9, 12

Oral questions

If 2 children have 5 counters each. How many counters are there altogether?
If 2 children have 6 counters each. How many counters are there altogether?

Learners cut the shapes from Cut-out 4 (Worksheet 60 section above the line) and paste it in the correct block. Learners must count the shapes and write the answer in the block
Answers: 12 triangles, 12 circles, 12 squares, 12 hearts

Learners must share the shapes between the children using the shapes from Cut-out 4 (Worksheet 60 section below the line).
Answers: 5 triangles each, 1 square each

61 Grouping and sharing again

Grade 1 links: 29-30, 49, 52, 54, 56, 80-84, 90-92, 112-114, 117-118, 120 Grade 3 links: 2, 16, 30a-30b, 31, 34-36, 63, 78, 81, 83-85, 87, 92-93, 126

Objectives

- Share numbers or objects from $0-50$ in equal groups (and remainders)
- Solve number problems that involve equal sharing and grouping in context and explain own solutions

Resources

Teacher: Writing board, unifix cubes, beads
Learner: Workbook page 130, Cut-out 4 (Worksheet 61 section), scissors, glue, pencil and colouring pencils
Concrete resources:

Concrete

In pairs, give learners 2 trains of unifix cubes.

Share it between you. (Each child will get 1 train of unifix cubes). Learners say: "We have 2 groups of 10 ."
In pairs, give learners 2 trains of unifix cubes and 8 small cubes.
Share it between you. (Each child will get 1 train of unifix cubes and 4 small cubes each).
-9日
0030
We have 2 groups of 14 .
Do the same with $12,14,16$ and 20.

Answers: • 20 beads and each gets 10

- 26 beads and each gets 13
- 28 beads and each gets 14

61 Grouping and sharing again cont...

Content links: $5,58-60,62-63,88,110,113,118,121$

Oral questions

If I share 22 beads between 2 children. How much will each get?

Ask learners: "How many beads are in each circle?"
Answer: 20, 30, 30, 32

Learners must cut the beads from Cut-out 4 (Worksheet 61 section) and paste it in their workbook. Learners must count the beads.

Answer:

- 26 red beads
- 30 yellow beads
- 24 blue beads
- 28 green beads

62 Halves: 1-20

Objectives

- Halve sets of objects or numbers up to 20

Resources

Teacher: Writing board, counters, containers
Learner: Workbook page 132, pencil and colouring pencils
Concrete resources:

beads	counters	stones	unifix cubes

Dictionary
Halving: to share objects/items between 2
To divide a number by 2 , e.g.
half of 4 is 2

Concrete

Give each learner 20 counters and 2 containers. Take 4 counters. Share it between the 2 containers. How many counters are in each container?

Do the same with $6,8,10,12,14,16,18$ and 20.
Learners must say what happened to the apples? Answers: They are divided into 2 baskets.

Learners must share the fruit on the left in the baskets on the right and draw it. Answers:

- 22 oranges, 11 in one basket and 11 in the other.
- 14 strawberries, 7 in one basket and 7 in the other.
- 18 bananas, 9 in one basket and 9 in the other.
- 30 pears, 15 in one basket and 15 in the other.

62 Halves: 1-20 continued

Oral questions

Ask the learners questions such as

- Half of 12.
- Half of 18 .
- Half of 20.

63 Sharing 20-50

Objectives

- Halve sets of objects or numbers up to 50
- Solve and explain solutions to practical problems that involve equal sharing

Resources

Teacher: Writing board, beads, containers, unifix cubes
Learner: Workbook page 134, pencil and colouring pencils
Concrete resources:

Dictionary

Halve: to share objects or items between 2 , to divide a number by 2, e.g. half of 42 is 21

More grouping and sharing from 20 to 50

Concrete

Give each learner 50 unifix cubes and two containers. The learners can work in groups.

- Ask learners to take 40 unifix cubes. Share it between the two containers. What is half of 40?
- Ask learners to take 30 unifix cubes. Share it between the two containers. What is half of 30 ?
Do the same with $32,34,36,42,44,46$ and 48.
What is half of $32,34,36,42,46$ and 48 ?

Learners must say what happened to the beads?

Answers: The 44 beads was divided into 2 bowls. Each bowl has 22 beads.

63 Sharing 20-50 continued

Learners must share the beads on the left in the baskets on the right by drawing it.

Answers:

- There are 28 beads. Each basket will have 14 beads.
- There are 44 beads. Each basket will have 22 beads.
- There are 40 beads. Each basket will have 20 beads.
- There are 46 beads. Each basket will have 23 beads.

Learners must colour half of each diagram.
Answers:

- Colour 2 blocks
- Colour 4 blocks

Colour 8 blocks

Homework

- Do question 3 for homework.

Reflection questions

Can learners do the following?

- Halve sets of objects or numbers up to 50
- Solve and explain solutions to practical problems that involve equal sharing

64 Data

Objectives

- Sort objects
- Collect data about the class or school
- Represent data in tables, bar graphs and pictographs

Resources

Teacher: Writing board, make shapes of circles, triangles, squares and rectangles from old cardboard or use plastic shapes
Learner: Workbook page 134, pencil, colouring pencils

Dictionary

Sort: to arrange or group in a certain way according to some common quality or characteristic that each member of the group has Pictograph: a diagram that carries its meaning through its pictorial resemblance to a physical object. Good example are the pictographs of male and female shapes outside public toilets. Pictographs are often used to represent a particular number of units of data, for example a pictogram of a motor car may represent 100 cars.

Introduce sorting and pictographs

64 Data continued

Oral questions

If I have 8 triangles and 4 squares.

If I have 8 triangles and 4 squa
Which do I have the most of?
Can learners do the following?
Which do I have the least of?

- Sort objects
- Collect data about the class or school
- Represent data in tables, bar graphs and pictographs

Gace 2 Red 2

Mathemakics Teacher Guide
basic education
Department:
Basic Education

Contents Grade 2 Book 2

No	Worksheet Topic	Workbook Pg	Guide Pg
65	Numbers 50 to 99	2	137
66	Numbers IOO to 150	4	139
67	Full, half full, empty	6	141
68	More capacity	8	143
69	Numbers 150 to I70	10	145
70	Counting and estimating (0 - IOO)	12	147
71	More data	14	149
72	Addition: O to 50	16	151
73	Addition: O to 75	18	153
74	More addition: O to 75	20	155
75	Balls, boxes and cylinders	22	157
76	Slide, roll and build with 3-D objects	24	159
77	More addition and subtraction 0 to 75	26	161
78	More money	28	163
79	Note money	30	165
80	Time-patterns	32	167
81 a	Hours and minutes	34	169
816	Minutes and hours	36	171
82	Repeated addition	38	173
83	Multiply by 5	40	175
84	Multiply by 2	42	177

$85 a$	Quarter past	44	179
$85 b$	Time passes	46	181
86	Double up	48	183
87	Doubling and halving	50	185
88	More multiplication	52	187
89	Number patterns	54	189
90	Fractions - halves	56	191
91	Fractions - more halves	58	193
92	Position and views	60	195
93	More and more data	62	197
94 a	Fractions - quarters	64	199
$94 b$	Fractions - more quarters	66	201
95	Geometric patterns	68	203
96	Data sorting	70	205
97	Numbers I50 to I80	72	207
98	Numbers I70 to 200	74	209
99	2 2-D shapes	76	211
100	Numbers O to 200	78	213
101	Addition and subtraction	80	215
102	Addition and subtraction again	82	217
103	Shape patterns	84	219
104	More addition and subtraction	86	221
105	Even more additon and subtraction	88	223
106	3 -D objects	90	225

IO7	Even more data	92	227
IO8	Calculating money	94	229
IO9	Solve money problems	96	231
IIO	Grouping and sharing	98	233
III	Even more capacity	100	235
II2	Number patterns	102	237
II3	Multiply by 3	104	239
II4	Mixed multiplication	106	241
II5	More multiplication	108	243
II6a	Days of the week	110	245
II6b	Days, weeks and months	112	249
II7	More number patterns	114	251
II8	Equal sharing leading to fractions	116	253
II9	Length	118	255
I20	More heavier and lighter	120	257
I2I	More sharing leading to fractions	122	259
I22	Fractions	124	261
I23	More fractions	126	263
I24	Symmetry and shapes	128	265
I25	Arrays and fractions	130	267
I26	A fraction of a collection of objects	I32	269
I27	Symmetry in patterns	I34	271
I28	More symmetry	136	273

65 Numbers 50-99

Content links: 2-4, 35, 66, 69, 97-98, 100
Grade 1 links: 9-11, 14, 17-18, 33-34, 36, 38-39, 65-69, 97-101
Grade 3 links: $3,23-25 \mathrm{~b}, 33,41,43,45,65-67,69-71,98-101,103-104$

Objectives

- Identify, recognise and read number symbols up to 99
- Write number names 0-99
- Count forwards and backwards in 1s between 0-99
- Compare whole numbers
- Recognise place value up to 99

Resources

Teacher: Writing board, 1 to 100 number boards, base ten blocks, place value number cards
Learner: Workbook page 2, pencil, colouring pencils
Concrete resources:

Dictionary

Number: a count or a measurement, e.g. 114
Number names: e.g. one hundred and fourteen
Order: arrangement according to size, amount or value, e.g. arrange
(order) from small to large - 52 469, 52 470, 52471
Compare: to describe as bigger as, smaller as or equal, e.g. 2345 is smaller than 2435

Introduce numbers from 100-120

65 Numbers 50-99 continued

Content links: 2-4, 35, 66, 69, 97-98, 100
Grade 1 links: 9-11, 14, 17-18, 33-34, 36, 38-39, 65-69, 97-101
Grade 3 links: 3, 23-25b, 33, 41, 43, 45, 65-67, 69-71, 98-101, 103-104

	Learners must write each number for the answers to Question 2 above in words: Answers: sixty-eight; eighty-six; fifty-three; seventy-one; ninety-five; sixty-nine Learners must give two numbers smaller and two numbers bigger than the given number.				
			Number		
	53	54	55	56	57
	61	62	63	64	65
	86	87	88	89	90
	93	94	95	96	97
	69	70	71	72	73

Oral question

- Let us count: $50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65$, $66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85$, $86,87,88,89,90,91,92,93,94,95,96,97,98,99$
- Then backwards: $99,98,97,96,95,94,93,92,91,90,89,88,87,86,85$, $84,83,82,81,80,79,77,76,75,74,73,72,71,70,69,68,67,66,65,64$, $63,62,61,60,59,58,57,56,55,54,53,52,51,50$
- Which number comes before 77 ?
- Which number comes before 68 ?
- Which number comes after 59 ?
- Which number comes after 98 ?

Learners must complete the number lines.

Learners must cut three numbers between 50 and 99 from a magazine or newspaper. Paste it here. Answer: Any three of $51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68$, $69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86$, $87,88,89,90,91,92,93,94,95,96,97,98$

Homework
Learners do Question 6 for homework.

Reflection questions

Can learners do the following?

- Identify, recognise and read number symbols up to 99
- Write number names 0-99
- Count forwards and backwards in is between 0-99
- Compare whole numbers
- Recognise place value up to 99

66 Numbers 100-150

Objectives

- Identify, recognise and read number symbols up to 150
- Write number names 0-150
- Count forwards and backwards in 1s between 0-150
- Compare whole numbers
- Recognise place value up to 150

Resources

Teacher: Writing board, 1-200 number boards, base ten
blocks, place value number cards
Learner: Workbook page 4, pencil
Concrete resources:

| beads counters | stones | unifix cubes |
| :---: | :---: | :---: | :---: |

Dictionary

Number: a count or a measurement, e.g. 114
Number names: e.g. one hundred and fourteen
Order: arrangement according to size, amount or value, e.g. arrange (order) from small to large - 52 469, 52470,52471
Compare: to describe as bigger as, smaller as or equal, e.g. 2345 is smaller than 2435

Concrete and Representational

In groups give learners 200 number boards, base ten blocks, place value cards.

- Use the number board to count
forwards and backwards in ones from 120-150
- Ask learners to point to 148.
- Ask them to show the number
with base ten blocks.
- Ask them to show it using the number cards.

Learners colour in the circles.

Learners must write a number for. The first example will guide you. Answer:

66 Numbers 100-150 continued

Content links: 2-4, 35, 65, 69, 97-98, 100
Grade 1 links: $9-11,14,17-18,33-34,36,38-39,65-69,97-101$
Grade 3 links: $3,23-25 b, 33,41,43,45,65-67,69-71,98-101,103-104$

What number comes between?
Answers: one hundred and four, one hundred and forty, one hundred and twenty-one, one hundred and forty-nine, one hundred and forty-seven

Learners must write down two numbers smaller and two numbers bigger than the given number. Answer:

Smaller		Number	Bigger	
121	122	123	124	125
143	144	145	146	147
106	107	108	109	110
139	140	141	142	143
132	133	134	135	136

Oral questions

- Let us count: $120,121,122,123,124,125,126,127,128,129,130,131$, $132,133,134,135,136,137,138,139,140,141,142,143,144,145,146$, 147, 148, 149, 150
- Then backwards: $150,149,148,147,146,145,144,143,142,141,140$, $139,138,137,136,135,134,133,132,131,130,129,128,127,126,125$, 124, 123, 122, 121, 120
- Which number comes before 124 ? Which number comes before 150 ?
- Which number comes after 130 ? Which number comes after 149 ?

Learners must cut three numbers between 100 and 150 from a magazine or newspaper. Paste it here
Answer: Any three of 101, 102, 103, 104, 105, 106, 107, 108, 109, $110,111,112,113,114,115,116,117,118,119$

Homework

- Learners complete the fun activity (Question 6) on page 7 for homework.

Reflection questions

Can learners do the following?

- Identify, recognise and read number symbols up to 150
- Write number names 0-150
- Count forwards and backwards in is between 0-150
- Compare whole numbers
- Recognise place value up to 150

67 Full, half full, empty

Objectives

- Recognise full, empty and half (full) quantities (volumes) in containers.
- Compare, order and record the capacity of containers

Resources

Teacher: Writing board, containers
Learner: Workbook page 6, pencil and colouring pencils

Dictionary

Full: means that a container is totally full of the matter it contains (Note that with containers with measurement marks the containers may be considered full when the highest measurement mark is reached even though the container is not full to the brim. The same applies to unopened cold drinks where the bottle is not filled right to the top.) Half full: contains matter that fills up half the space of the container Container: a vessel that can hold solid objects, liquids or gases Capacity: the total amount the container can hold
Volume: the amount of space taken up by something. So volume is the actual amount of space that the matter in a container occupies.

Introduce full and empty

Counting

Place 12 containers on your table. Fill 4 of them, half-fill 4 of them and leave 4 empty. Place them in a random order. Write the words on the board.

Ask the learners if the containers are full, empty or half.

67 Full, half full, empty continued

Oral question

- What does full mean?
- What does empty mean?
- What does half full mean?

Learners must draw their own containers.
Answers: Learners draw there own containers.
Learners must say which container holds the most? Answers: The middle bottle with yellow liquid.

Homework

- Identify 5 containers in your home that are half full. Why are they half full?

Reflection questions

Can learners do the following?

- Recognise full, empty and half (full) quantities (volumes) in containers.
- Compare, order and record the capacity of containers

68 More capacity

Objectives

- Estimate, measure, compare, order and record the capacity of containers using non-standard measures

Resources

Teacher: Writing board, different containers
Learner: Workbook page 8, pencil and colouring pencils

Dictionary
Capacity: the amount that something can hold. Usually it means volume, such as millilitres (ml) or litres (I) in metric, e.g. "The bucket has a capacity of 9 litres."

Non-standard measures: In grade 2 we make use of non-standard measures, e.g. the bottle can hold 4 cups of water.

Introduce capacity

Concrete

Work in groups.
Give each group a big container (make use of old 1 litre containers).
Give each group a cup (e,g, old yogurt containers).
Ask them how many cups do they think will fill the containers (estimate).
Ask them to measure it by filling the container with cups of water or sand.

Oral question

Place a bigger container on the desk (e.g. 2 litre). Ask learners how many cups will fill the container.

68 More capacity continued

Learners must see how many spoons more do you need to fill the measuring cup?
Answers:

Doubling 2 cups of milk means: Answer: 4 cups of milk.

Homework

Ask your parents or caregiver to help you do the following.
Use various pots or containers. Take a cup as your measure. First, guess (estimate) how many of these cupfuls will fill each of the containers, then measure it.

Reflection questions

Can learners do the following?

- Estimate, measure, compare, order and record the capacity of containers using non-standard measures

69 Numbers 150-170

Content links: 2-4, 35, 65, 97-98, 100
Grade 1 links: 9-11, 14, 17-18, 33-34, 36, 38-39, 65-69, 97-101
Grade 3 links: $3,23-25 \mathrm{~b}, 33,41,43,45,65-67,69-71,98-101,103-104$

Objectives

- Identify, recognise and read number symbols up to 170
- Write number names 0 to 170
- Count forwards and backwards in 1s between 0 and 170
- Compare whole numbers
- Recognise place value of numbers up to 170

Resources

Teacher: Writing board, 1-200 number boards, place value cards, base 10 blocks
Learner: Workbook page 10, pencil, colouring pencils, place value cards. Concrete resources:

| beads counters | stones | unifix cubes |
| :---: | :---: | :---: | :---: |

Dictionary

Number: A number is mathematical value, expressed by a word,
symbol, or figure, that represents a particular quantity and used in counting and doing calculations, e.g. 162.
Number names: e.g. one hundred and sixty-two
Order: arrangement according to size, amount, value or some other characteristic, e.g. arrange (order) from small to large - 52 469, 52 470, 52471

Compare: to describe as bigger as, smaller as or equal, e.g. 2345 is smaller than 2435

Introduce numbers from 150-170

Abstract In groups give learners 1 to 200

number board, base ten blocks and place value cards.

- Use the number board to count
forwards and backwards in ones

from 150-170.
- Ask learners to point to 159.
- Ask them to show the number
using base ten blocks.
- Ask them to show it with place value number cards.

Learners must write which numbers come between: Answers: 150 and 155: 151, 152, 153, 154
158 and 162: 159, 160, 161
170 and 165: 169, 168, 167, 166
163 and 167: 164, 165, 166
172 and 166: 171, 170, 169, 168, 167

Learners give two numbers smaller and two numbers bigger than the given number. Answers:

Smaller			Number	Bigger		
153	154	155	156	157		
166	167	168	169	170		
149	150	151	152	153		
160	161	162	163	164		
158	159	160	161	162		

Learners must cut three numbers between 150 and 170 from a magazine or newspaper. Paste them here.
Answer: 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, $162,163,164,165,166,167,168,169,170$

Homework
Learners do Question 6 for homework.

Reflection questions

Can learners do the following?

- Identify, recognise and read number symbols up to 170
- Write number names 0 to 170
- Count forwards and backwards in 1 s between 0 and 170
- Compare whole numbers
- Recognise place value of numbers up to 170

70 Counting and estimating (0-100)

Objectives

- Estimate objects up to 100
- Count objects up to 100

Resources

Teacher: Writing board, beads, transparent containers, counters
Learner: Workbook page 12 and colouring pencils

Dictionary

Estimate: make a guess or judgement about the size of a quantity rather than carrying out a process to measure the quantity more accurately

Concrete

Learners work in groups.
Place the following on each groups table.
i) A transparent container with beads less than a 100. (You can replace beads with stones).
ii) A pile of counters less than 100. (non-transparent)
iii) A container with unifix cubes.

Each group should guess how many objects there are for i-iii. Learners then count the objects.
Learners compare their estimation with the count.

Learners estimate the number of beads and then count the beads.

70 Counting and estimating ($0-100$) continued
 in the container (the blue rod representing a 10).

Oral question

What does estimate mean? Why should we count the objects we estimate?

Term 3

71 More data

Objectives

- Sort objects
- Represent data in a pictograph
- Answer questions from a set of data

Resources

Teacher: Writing board, pick some leaves (five types)
Learner: Workbook page 14, colouring pencils.

beads	counters	stones	unifix cubes

Dictionary

Sort: to arrange a group in a specific way.
Pictograph: a simple chart in which pictures represent numbers to make it more interesting and easier to understand. A key is often included to indicate what each picture or symbol represents. All the pictures must be of the same size, but a fraction of an picture can be used to show the respective fraction of that amount

Oral questions

If I have 10 red flowers, 6 pink flowers and 8 white flowers. Which flower do I have the least of?

Introduce sorting

Term 3

71 More data continued

72
 Addition 0 - 50

Objectives

- Add to 50
- Use number lines from 0-50 when doing calculations

Resources

Teacher: Writing board, counters, place value number cards
Learner: Workbook page 16, pencil and colouring pencils
Concrete resources:

Dictionary

Addition on a number line: A number line is useful for addition.
E.g. $3+2=$

or

Introduce addition 0-50

Concrete

Ask each learner to take between 5-10 counters of the same colour and place it in front of them. Ask them to take another 5-10 counters of the same colour but a different amount from the previous counters and place it in front of them.

How many counters do you have in total? Answer: 11

Representational
 Make a drawing of your counters.
 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Abstract
Write a sum for your drawing.
Answer: 5+6=11

Ask the learners to sort and make a drawing. Count the marbles in the picture.

72 Addition 0-50 cont...

Oral questions
Learners add the following mentally: $3+2,7+4,9+6,7+8$

Add the counters. Answer: 16 + $12=28$
Renection questions
Can the learners do the following?

- Add to 50
- Use the number lines from $0-50$ when doing calculations

73 Addition 0-75

Objectives

- Add to 75
- Use the building up and breaking down of numbers to perform calculations

Resources

Teacher: Writing board, counters, place value number cards Learner: Workbook page 18, pencil, colouring pencils

Dictionary

Calculation: to determine the value of something or the solution to a problem involving numbers by a mathematical process

Term 3

Content links: 5, 21, 23a-24, 37-39b, 41-42b, 72, 74, 77, 101-102, 104-105

Grade 1 links: 15, 19-22, 25-26, 43, 45-46, 49-50, 53-57, 70-73, 81, 85, 90-91, 92, 102, 104, $112-113,118$

73 Addition 0-75 cont.
Grade 3 links: 5, 23-24, 27-28, 33, 35b, 37-39, 41-43, 45-47, 49, 73-75, 105, 107-109

Oral questions
Let us count in fives: $5,10,15,20,25,30,35,40,45,50,55,60,65,70,75$

Add. Answers:

$21+10=31$	$53+10=63$	$46+10=56$
$68+10=78$	$37+10=47$	$42+10=52$
$74+10=84$	$19+10=49$	$55+10=65$

Homework

- Bonds 5 to 10
- Complete the word sum in Question 6 for homework

Reflection questions
Can learners do the following?

- Add to 75
- Build up and break down numbers to perform calculations

74 Addition and subtraction: 0-75

Content links: 5, 23a-24, 37-39b, 41-42b, 72-73, 77, 101-102, 104-105
Grade 1 links: 15, 19-22, 73, 77, 104

Objectives

- Add to 75
- Recognise place value of numbers up to 75

Resources

Teacher: Writing board, place value number cards
and unifix cubes
Learner: Workbook page 20, pencil, colouring pencils and small black board and chalk
Concrete resources:

Dictionary

Addition: Addition is finding the total or sum by combining two or more numbers, e.g. $5+6=1,3+2+7=12$
The symbol for addition is

Introduce place value and addition

Concrete

Show learners the following number cards.

- Give the learners sets of 100 unifix cubes.
- Each learner uses their small black board and chalk or scrap paper and a pencil.
- Put a 70 and a 2 card on the board.

70

- Ask the learners to show it using unifix cubes

- Ask the learners, "How can I write this as a sum? Do it on your small black board.
- Write the answer. Do a few more: 41, 54, 63, 89 and 78.

74 Addition and subtraction: 0-75 cont...

Content links: 5, 23a-24, 37-39b, 41-42b, 72-73, 77, 101-102, 104-105
Grade 1 links: 15, 19-22, 73, 77, 104
Grade 3 links: 5, 24, 27, 33, 35a-35b, 37-39, 41-42,
45-47, 73-75, 105, 107-109

Learners must write a sum for the unifix cubes. Answers:

- $50+8=58$
- $70+9=79$
- $60+4=64$

Learners must add the numbers. Answers:

$6 O+4=64$	$3 O+2=32$
$4 O+9=49$	$5 O+4=54$
$2 O+8=28$	$10+7=17$
$70+5=75$	$70+8=78$

$50+6=56$
Oral questions
What is: $60+390+1$
$50+9$

Homework

- Learners complete question 5 for
homework. Answer: 88 counters

Reflection questions
Can learners do the following?

- Add to 75
- Recognise place value of numbers up to 75

75 Balls, boxes and cylinders

Objectives

- Recognise and name 3-D objects like balls (spheres), boxes (prisms) and cylinders
- Sort, compare and describe 3-D objects in terms of size and shape

Resources

Teacher: Writing board, cereal boxes, toothpaste boxes, balls, cool drink cans, and toilet rolls
Learner: Workbook page 22, cereal boxes, toothpaste boxes, balls, cool drink cans, and toilet rolls

Dictionary

Sphere: a 3-D object shaped like a ball
Prism: a 3-D object shaped like a box, a 3-D object that has two identical ends and all flat sides
Cylinder: a 3-D object with two identical flat ends that are circular and one curved side

Bring some of the following items to class: balls, boxes such as cereal boxes, toothpaste boxes and cylinders such as cooldrink cans and toilet rolls.

Teach mathematics

Concrete

Place some cereal boxes, toothpaste boxes, balls and cool drink cans on your table. Write the words box, ball and cylinder on pieces of recycled paper or card board. Ask learners to match the words on the board with the objects on the table by sticking the names on the objects.

ball

cylinder

Representational

Give learners some advertisement
pamphlets. Ask them to identify:

- the box like objects
- the ball like objects
- the cylinder like objects

75 Balls, boxes and cylinders continued

Oral questions

Do you still remember what these shapes are called?
Ask the learners to identify the balls, boxes and cylinders by writing the word below each picture in their books.

box

cylinder

cylinder

box

Ask the learners to look at the pictures and colour in the smaller objects in each picture in blue.
Answer: Learners need to identify each of the 3 smaller items and colour them in blue.

Ask the learners to look at the object in each block and draw the same object, just bigger than the one shown.
Answer: Learners need to be creative and draw their own illustration of the object on a bigger scale.

Homework

Question 4
Ask your learners to complete this question at home by writing down how they would explain to the shop assistant what they are looking for. Answer:
Learners need to be creative and write their own explanation of the shape of the box they require for the present. Though it is essentially a box with seven sides some learners may say that it is a box that almost looks like a cylinder (although it is not perfectly round).

Reflection questions

Can learners do the following?

- Recognise and name 3-D objects like balls (spheres), boxes (prisms) and cylinders
- Sort, compare and describe 3-D objects in terms of size and shape

76 Slide, roll and build with 3-D objects

Objectives

- Describe, sort and compare 3-D objects in terms of whether they can roll or slide
- Build with 3-D objects

Resources

Teacher: Writing board, balls, boxes and cylinders, recycled cardboard
boxes
Learner: Workbook page 24, balls, boxes and cylinders, card board box

Dictionary

Roll: to move forward along a surface by repeatedly turning over and over (usually on an axis)
Slide: to move smoothly over a surface while maintaining continuous contact with the surface

Teach mathematics

Concrete

Group learners and give them boxes, balls and cylinders. Give them each a part of a recycled box to make a slide. Ask learners to move the object down the slide. Ask them questions such as:

- Did the ball roll or slide?
- Did the box roll or slide?
- Did the cylinder roll or slide?
- Can a cylinder both roll and slide?

Representational

Give the learners some 3-D objects to build various towers. Ask them to describe their towers using words such as boxes, balls and cylinders. Ask learners:

- What worked? Which objects can balance on each other?
- What did not work? Which objects do not balance on each other?

Find the instructions in the Learner Workbook at the top of page 24 before starting with question 1 . This must be done as a practical activity to show to your class if the items will balance.

76 Slide, roll and build with 3-D objects continued

Homework

Ask your learners to look at the match box towers in their workbooks and build their own match box tower as high as possible. Ask them to write down how many match boxes they used for the tower and draw a picture of how they built it to show the class the next day.

Reflection questions

Can learners do the following?

- Describe, sort and compare 3-D objects in terms of whether they can roll or slide
- Build with 3-D objects

77 More addition and subtraction 0-75

Objectives

- Add numbers from 0-75
- Subtract numbers from 0-75
- Recognise place value of numbers

Resources

Teacher: Writing board, place value number cards, unifix cubes
Learner: Workbook page 77, pencil, colouring pencils and small black board and chalk.
Concrete resources:

Dictionary

Addition: finding the total or sum by combining two or more numbers,
e.g. $5+6=1,3+2+7=12$

The symbol for addition is

Teach decomposition of numbers

Concrete to abstract

Display the following place value cards.

Give learners sets of 100 unifix cubes. Show this with your unifix cubes. Put all the tens and units together.

Ask the learners to write a sum on their small black boards. Possible answers.

$30+20+5+4$ $50+9$
 59

77 More addition and subtraction 0 - 75 cont.

Learners must add the numbers.
Answers:
$41+10=51 \quad 44+10=$

$$
71+10=81
$$

Oral questions
What is: $22+24$
$35+21$
$62+67$

Learners must add 36 and 24 and draw a picture to show their answer.
Answer: 36 + 24 = 60. Learner's own picture
Learners must subtract the numbers in the bottom box from the numbers in the top box.
Answer: 324141424
Write a subtraction sum for the subtraction illustrated by the blocks. Answers: 50-6=44 70-3=67

Learners subtract. Answer: 65-23=42 72-29=43
Leaners subtract ("minus")
Answer: $61-10=51 \quad 42-10=32 \quad 37-10=27$
Leaners must make a drawing showing a subtraction sum with marbles.
Answer: Learners do their own drawing for 62-21. 40 marbles are left. $62-21=41$

Homework

- Do question

6 for homework.

Reflection questions
Can learners do the following?

- Add numbers from 0-75
- Subtract numbers from 0-75
- Recognise place value of numbers

78 More money

Objectives

- Identify and add cents
- Solve money problems involving totals and change in cents and rands

Resources

Teacher: Writing board, money (rands and cents in coins)
Learner: Workbook page 78, pencil and colouring pencils, notes and coins from Cut-out 5, scissors and glue

Dictionary

Money: coins or notes used as a payment for goods and services. It is a medium of exchange. Each coin or money note represents a specific value.
Cent: a unit of money equal to one hundredth of the main currency unit (such as the Rand, Dollar, or Euro)

Term 3

Oral questions Which coins will make 145c, 150c, 160c, 175c, 180c	
	My father gives me another 50c. How much do I have? Draw a picture to show your answer. Answer: 150c (or R1,50c) I have 170c. I bought a sweet for 100c. How much money do you have left? Draw a picture to show your answer. Answer: 70c
Homework - Do the second word sum in Question 4.	
Reflection questions Can learners do the following? - Identify and add cents - Solve money problems involving totals and change in cents and rands	

79 Note money

Content links: 6, 25-26, 78, 108-109
Grade 1 links: 60a-62, 75-76, 107-108 Grade 3 links: 8, 95a-95b, 107

Objectives

- Identify money notes
- Add notes
- Solve money problems involving notes

Resources

Teacher: Writing board, prepare items with prices on for a shop
Learner: Workbook page 30, pencil, colouring pencils and money notes
from Cut-out 5 (= Cut-out 3)

Dictionary

Money: coins or notes used as a payment for goods and services. It is a medium of exchange. Each coin or money note represents a specific value.
Cent: a unit of money equal to one hundredth of the main currency unit (such as the Rand, Dollar, or Euro)
Rand: the main unit of currency in South Africa. One hundred cents make up one rand.

Oral questions
 If I have R50 and R20 in my purse. How much money do I have in my

 purse.

Learners must write how many Rands there are? Answers: R150, R140, R130, R130, R180, R230

Word sums: My brother has R100. I have R50 and my little sister has R20. How much money do we have altogether? Answers: R170

I have R160. I bought a shirt for R50. How much money do I have left?
Answers: R110

Homework

Complete the second word sum in Question 4 for homework.

Reflection questions
Can learners do the following?

- Identify money notes
- Add notes
- Solve money problems involving notes

80
 Time patterns

Objectives

- Read time in hours and minutes on an analogue clock face
- Follow simple numerical sequences on an analogue clock face up to 60
- Copy, extend and describe, counting in fives, simple numerical sequences up to 60

Resources

Teacher: Writing board, large analog clock face marked in hours, large analog clock face marked in minutes
Learner: Workbook page 32, colouring pencils

Dictionary

Hour: a unit of time that equals 60 minutes or one twenty-fourth of a day.
Minute: a basic unit of time equal to one sixtieth of an hour. It is also equal to 60 seconds.
Analogue clock: a clock that represents (displays) time without changing the marked numerals or symbols from 1 to 12 by means of moving hands and hours.
Sequence: a list of numbers or objects that are ordered according to a rule

Introduce minutes and hours

Concrete and representational

Show the learners a clock face. Place the long
hand on 12 and the short hand on 1 . We say it
is 1 o'clock.
Write it on the board.
Using the short hand go round the clock face doing the same with 2 to 12 o'clock.
Then, using the long hand on the clock face marked in minutes, ask the learners to count in fives. Start at the 5 on the clock face and end at 60.
Then, using the conventional clock face go though the same process of counting in fives and moving the long hand.

Oral questions

When I count in fives, using the ordinary clock face, at which number (in minutes) will I be when the long hand is at hour number \qquad

$4 ?$	20
$9 ?$	45
$12 ?$	60

12?

45 60

Learners look at the picture and discuss it.

Oral questions

When I count in fives minutes, how many minutes will it be when on the clock face the long hand is at
4? 20 minutes
9 ? 45 minutes
12? 60 minutes (or 0 minutes)

Answer: Learner's own answers.

Homework

- Complete
the last activity (Question 4) for homework.

Reflection questions
Can learners do the following?

- Read time in hours and minutes on an analogue clock face
- Follow simple numerical sequences on an analogue clock face up to 60

81a Hours and minutes

Objectives

- Tell 12-hour time in hours and minutes on analogue clocks
- Tell time in half and quarter hours
- Use terms such as "to", "after" and "past" in relation to telling the time

Resources

Teacher: Writing board, analogue clocks
Learner: Workbook page 34, pencil, and colouring pencils.

Dictionary

Minutes: The long hand on the clock shows us minutes. There are 60 minutes in an hour. We can count minutes in fives, e.g. $5,10,15, \ldots, 60$. Hours: The short hand on the clock shows us hours. We can count hours in ones, e.g. 1, 2, 3, ..., 12

Introduce minutes and hours.

Representational, abstract

Use a self made clock. Show it to the learners.
Ask learners:

- On which number is the short hand?
- What does this tell us (hours)?
- On which number is the long hand?
- What does this tell us? (minutes)
- Do we say " 2 minutes" or "10 minutes"?

Do a few examples with the learners using five past, ten past, fifteen past, twenty past and twenty-five past. Do some examples using quarter to,

81 a Hours and minutes continued

The short hand shows us between 6 and 7 hours. The long hand shows us it is 30 minutes. We say it is half past six.

The short hand shows us it is a little past 4 hours. The long hand shows us it is 15 minutes.
We say it is quarter past four.
The short hand shows us 5 hours.
The long hand shows us it is 0 (or 60) minutes. We say it is five (o'clock)
Learners must draw the long hand and short hand. Answers:

Ora questions

- What time is it if the long hand is on 2 and the short hand on 5 ?
- What time is it if the long hand is on 1 and the short hand on 7 ?
- What time is it if the long hand is on 5 and the short hand on 2 ?
- What time is it if the long hand is on 3 and the short hand on 1 ?
- What time is it if the long hand is on 4 and the short hand on 5 ?

Homework

Learners complete question 4 for homework.

Reflection questions

Can learners do the following?

- Tell 12-hour time in hours and minutes on analogue clocks
- Tell time in half and quarter hours
- Use terms such as "to", "after" and "past" in relation to telling the time

- Common errors

Make notes of common errors made by the learners

Objectives

- Tell 12-hour time in hours and minutes on analogue clocks
- Tell time in half and quarter hours
- Use terms such as "to", "after" and "past" in relation to telling the time

Resources

Teacher: Writing board, clocks
Learner: Workbook page 36 and colouring pencils

Dictionary

Minutes: The long hand on the clock shows us minutes. There are 60 minutes in an hour. We can count minutes in fives, e.g. $5,10,15, \ldots, 60$. Hours: The short hand on the clock shows us hours. We can count hours in ones, e.g. $1,2,3, \ldots, 12$

Introduce minutes and hours

Representational, Abstract

Use a self made clock. Show it to the learners. Ask learners:

- On which number is the short hand?
- What does this tell us? (hours)
- On which number is the long hand?
- What does this tell us? (minutes)
- Do we say "10 minutes" or "50 minutes"?

Do a few examples with the learners using five to, ten to, fifteen to, twenty to and twenty-five to.

Learners must look at the picture and discuss it.

The short hand is just before three. The long hand stands on 35 minutes. It is $\mathbf{2 5}$ minutes before the long hand is on 12.
We say it is twenty five to three.

We mean it is 25 minutes before the 3rd hour.

Learners say what the time is.
Answers:
The short hand is just before three. The long hand stands on 40 minutes. It is 20 minutes before the long hand is on 12. We say it is twenty to three.

The short hand is just before one. The long hand stands on 45 minutes. It is 15 minutes before the long hand is on 12. We say it is quarter to one.

The short hand is just before seven. The long hand stands on 50 minutes. It is 10 minutes before the long hand is on 12. We say it is ten to seven.

The short hand is just before nine.
The long hand stands on 55 minutes.
It is 5 minutes before the long hand is on 12. We say it is five to nine.

Learners must draw the long hand and short hand
Answers:

Twenty to three.

Twelve to twelve.

Oral questions

- What time is it if the long hand is on 6 and the short hand on 5 ?
- What time is it if the long hand is on 9 and the short hand on 7 ?
- What time is it if the long hand is on 11 and the short hand on 2?
- What time is it if the long hand is on 7 and the short hand on 1 ?
- What time is it if the long hand is on 8 and the short hand on 5 ?

Homework

- Learners complete question 3 for homework.

Reflection questions

- Tell 12 -hour time in hours and minutes on analogue clocks
- Tell time in half and quarter hours
- Use terms such as "to", "after" and "past" in relation to telling the time

Common errors
Make notes of common errors made by the learners.

Objectives

- Add the same number repeatedly
- Multiply numbers 1 to 10 by 2,4 , and 5
- Use appropriate symbols $(+,-, x)$

Resources

Teacher: Writing board, counters
Learner: Workbook page 38, paper and pencils
Concrete resources:

beads	counters	stones	unifix cubes

Dictionary

Repeated addition: The basic idea of multiplying is repeated addition,
e.g. $4+4+4=12$

Addition number sentence or sum: An addition number sentence include the plus sign (+), numbers and the equal ($=$) sign.
Multiplication number sentence or sum: A multiplication number sentence include the times sign (x), numbers and the equal (=) sign.

Concrete

Give the learners 20 counters or stones each. Ask them to make ten groups of 2.

:8::8:8:8:8:

Ask the learners how many counters are there? Ask them how did they count it. Guide learners to say: $2,4,6,8,10,12,14,16,18,20$
Ask learners to make a drawing of the counters set out and to circle each group of 2.

Ask the learners how many groups of 2 do they have? 10 groups of 2 .
Ask the learners to look at their drawings and then make an:

- addition number sentence: $2+2+2+2+2+2+2+2+2+2=20$
- multiplication number sentence: $10 \times 2=20$

Do similar activities with fours and fives.

example ard so that every learner under how you worked out the sum.

Ask the learners to work out the sentence and sums for the following pictures.
Answer:

- 4 groups of $2 ; 2+2+2+2=8 ; 4 \times 2=8$
groups of $2 ; 2+2=4 ; 2 \times 2=4$
- 6 groups of 2; $2+2+2+2+2+2=12 ; 6 \times 2=12$

Ask the learners to look at the pictures and now do the same
as what they did in question 1, but this time each bag will have Answer:

- 7 groups of $4 ; 4+4+4+4+4+4+4=28 ; 7 \times 4=28$
- 10 groups of $4 ; 4+4+4+4+4+4+4+4+4+4=40$;
- 8 groups of $4 ; 4+4+4+4+4+4+4+4=32 ; 8 \times 4=32$
- 5 groups of $4 ; 4+4+4+4+4=20 ; 5 \times 4=20$

Ask the learners to complete the multiplication table.

Answer:

\times	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	12	14	16	18	20
4	4	8	12	16	20	24	28	32	36	40
5	5	10	15	20	25	30	35	40	45	50

Homework

Ask the learners to complete this question for homework.
Answer:
5 boxes $\times 2$ muffins $=10$ muffins

4 boxes $\times 5$ cup cakes $=20$ cup cakes
3 boxes $\times 4$ doughnuts $=12$ doughnuts

Reflection questions

Can the learners do the following?

- Add the same number repeatedly
- Multiply numbers 1 to 10 by 2,4 , and 5
- Use appropriate symbols (+,-, x)

83 Multiply by 5

Content links: 29-31, 50, 52,54, 84, 88, 113-115 Grade 1 links: None
Grade 3 links: 24, 53, 78, 83, 89, 113

Objectives

- Multiply numbers 1 to 15 by 5
- Use appropriate symbols (,,$+- x$)

Resources

Teacher: Writing board, board, 1-100 number boards, counters, unifix cubes, beads
Learner: Workbook page 40, pencil and colouring pencils

beads	counters	stones	unifix cubes

Dictionary

Multiplication: The basic idea of multiplication is repeated addition, e.g. $5+5+5=15,5 \times 3=15$

Introduce multiplying by 5
Learners look at the picture and discuss it.

Term 3
Mathematics Teacher Guide - Grade 2

83 Multiply by 5 continued

Learners complete the following. Answers:

Toes on one foot	Feet	Total	Fingers on one hand	Hands	Total
5	$\times 2$	$=10$	5	$\times 1$	$=5$
5	$\times 3$	$=15$	5	$\times 2$	$=10$
5	$\times 4$	$=20$	5	$\times 4$	$=20$
5	$\times 6$	$=30$	5	$\times 7$	$=35$

Oral question
Let us count: $5,10,15, \ldots, 50$

Homework

- Practice the 5 times table.

Reflection questions
Can learners do the following?

- Multiply numbers 1 to 15 by 5
- Use appropriate symbols (,,$+- x$)

84 Multiply by 2

Content links: 29-31, 50, 52,54, 83, 88, 113-115 Grade 1 links: None
Grade 3 links: $25 a-25 b, 51,81,83,85,89,117$

Objectives

- Multiply numbers 1 to 15 by 2
- Use appropriate symbols $(+,-, x, \div)$

Resources

Teacher: Writing board, 1-100 number boards, counters, unifix cubes, beads
Learner: Workbook page 42, pencil and colouring pencils

Dictionary

Multiplication: The basic idea of multiplication is repeated addition,
e.g. $2+2+2=6,3 \times 2=6$

Introduce multiplying by 2
Learners look at the picture and discuss it.

Concrete

Ask learners to set out the following on their desk using beads, counters,
stones or unifix cubes.
Place two counters on your desk.
Place another two, place another two, place another two.
How many counters do you have?
Let us count: 2, 4, 6, 8 .
Let us make an addition sum: $2+2+2+2=8$
Let us make a multiplication sum: $2 \times 4=8$

Abstract

Place counters on the correct places on a 1 to 100 number board.

1	0	3	0	5	0	7	0	9	0
11	0	13	0	15	0	17	0	19	0
21	0	23	0	25	0	27	0	29	0
31	0	33	0	35	0	37	0	39	0
41	0	43	0	45	0	47	0	49	0
51	0	53	0	55	5	57	0	59	0
61	0	63	0	65	0	67	0	69	0
71	0	73	0	75	0	77	0	79	0
81	0	83	0	85	0	87	0	89	0
91	0	93	0	95	0	97	0	99	0

Learners must look at the picture and complete the following. Answers:
Pigeons: $1 \times 2=2$ and $1 \times 2=2$
Ducks: $2 \times 2=4$ and $2 \times 2=4$

Oral question
Let us count: $5,10,15, \ldots, 175$

84 Multiply by 2 continued

Content links: 29-31, 50,52,54, 83, 88, 113-115 Grade 1 links: None
 Grade 3 links: 25a-25b, 51, 81, 83, 85, 89, 117

Learners complete the following:

Learners complete the following:

Learners complete the drawings and sums.

Answer:

2 stars on each flag
$2+2+2+2+2+2=12$
$6 \times 2=12$

How many blocks in these slabs of chocolate
 Answer:
 $5 \times 2=10$
 $2 \times 5=10$
 Explain to the learners that you can identify 5 groups of two pieces of chocolate (5 rows of 2 pieces each) or 2 groups of 5 each
 (2 rows of 5 pieced each).
 The total number of pieces altogether is 20.

Homework

- Practice the $2 \times$ table.

Reflection questions
Can learners do the following?

- Multiply numbers 1 to 15 by 2
- Use appropriate symbols $(+,-, x, \div)$

85a Quarter past

Objectives

- Tell 12 -hour time in quarter hours on an analogue clock

Resources

Teacher: Writing board, analogue clock
Learner: Workbook page 44, pencil and colouring pencils

Dictionary

Quarter past: If the long hand is on three of a clock it is fifteen minutes past (which is a quarter of the 60 minutes shown on the clockface).

Introduce quarter past and quarter to

Concrete and representationa

Divide the clock face into half.
The long hand is on 6 . It is 30 minutes past, but we can also say it is half past. It means half of the clock.

Divide the clock into quarters.
The long hand is on 3 . It is 15 minutes past, but we can say it is quarter past

Learners must look at the picture and discuss it.
The short hand just passed one The long hand stands on fifteen minutes.

We say it is quarter past one.
We mean it is a quarter of an hour
(15 minutes) after the 1 st hour.

Learners say what the time is.
Answers:
The short hand just passed ten.
The long hand stands on fifteen minutes. We say it is quarter past ten.

Learners draw the long and short hands to show the time.

Answers:

The short hand just passed eight. The long hand stands on fifteen minutes. We say it is quarter past eight.

The short hand just passed three. The long hand stands on fifteen minutes. We say it is quarter past three.

85a Quarter past continued

Content links: 13-14, 22, 55, 57a-57b, 81a-81b, 89
Grade 1 links: None
Grade 3 links: $12,32,54,80,106$

Homework

- Learners can do Question 6 for homework.

Reflection questions

Can learners do the following?

- Tell 12-hour time in quarter hours on an analogue clock

Answer:
The short hand is just before eleven. The long hand stands on forty-five minutes. We say it is quarter to eleven.

Common errors
Make notes of common errors made by the learners.

85b Time passes

Objectives

- Use clocks to calculate length of time in hours

Resources

Teacher: Writing board, analogue clocks
Learner: Workbook page 46, pencil, piece of paper

Dictionary

Time: a measure in which events can be ordered from the past through the present into the future, and also the
 measure of durations of events and the intervals between them Hour: one 24th of the time it takes the earth to make one full rotation.

$$
\text { The short hand on the clock shows us hours using } 12 \text {-hour time. We can }
$$

count hours in ones, e.g. $1,2,3, \ldots, 12$.

Introduce calculating time passed

Concrete

Give 2 learners a clock each showing different times. Ask the rest of the class to look at these 2 times and to calculate how much time passed between the 2 shown times. Do more examples like this.

Representational

Draw a clock on the board. Ask the learners to draw a clock on a piece of paper showing 1 hour later than the time on your clock.
Do more examples like this.

Learners say how long each activity took. Answers:

85b Time passes continued
 Content links: 13-14, 22, 55, 57a-57b, 81 a-81b, 89 Grade 1 links: None
 Grade 3 links: 12, 32, 54, 80, 106

Homework

See what time your mother or caregiver starts cooking supper and what time she ends. How long did it take the person to cook supper?

Rellection questions

Can learners do the following?

- Use clocks to calculate length of time in hours

Common errors

Make notes of common errors made by the learners

86 Double up

Objective

- Double numbers from 0-10

Resources

Teacher: Writing board, counters
Learner: Workbook page 48, pencil and colouring pencils

Dictionary

Double: make twice as big
Multiply by 2: e.g. double 3 is 6

Introduce doubling numbers from 0-10

Concrete

Tell learners to take 2 counters each. Ask them to double the counters. Look and see if learners add another two counters.

Ask learners to place:
 - 1 counter on their desk. Double it.
 - 3 counters on their desk. Double them.
 - 4 counters on their desk. Double them.
 - 5 counters on their desk. Double them.
 Draw the following on the board:
 20

 How many apples are in the first block?

How many apples are in the second block?
We can say: Double 3 or 2×3
Give them more examples with double 2,4 , and 5 .

Term 3
Mathematics Teacher Guide - Grade 2

86 Double up continued

Learners add the dots and write a sum for each.
Answer:

- $2+2=4$
- $3+3=6$
- $4+4=8$
- $1+1=2$
- $5+5=10$

Oral questions

Ask the learners to:

- Add 2 squares and 2 squares
- Add 4 circles and 4 circles.
- Add 5 triangles and 5 triangles.

Learners use the number lines to write a sum.

Answer:

- $3+3=6 \cdot 2+2=4 \cdot 4+4=8 \cdot 1+1=2 \cdot 5+5=10$

Learners trace the hoops with their fingers when they add.

Reflection questions

- Double numbers from 0 - 10Common errors
Make notes of common errors made by the learners.

87 Doubling and halving

Objectives

- Use doubling and halving when doing calculations

Resources

Teacher: Writing board, unifix cubes
Learner: Workbook page 50 , pencil, colouring pencils

Dictionary
Double: make twice as big, e.g. multiply by 2 as in $4 \times 2=8$ or $12 \times 2=24$ Halve: make half as big, e.g. divide 8 by $2=4$

Introduce doubling

Concrete

Ask the learners to place 5 unifix cubes on their desks
0 O
Ask learners to double the cubes
Hancen
In groups, ask learners to place 12 unifix cubes (one 10-cube train and two cubes) on the desk. Ask them to double them.

Learners
look at the picture and make their own story to explain it.

Learners count and colour half the objects:

Count 6
Half is 3
Count 18

87 Doubling and halving continued

88 More multiplication

Content links: 29-31, 50, 52, 54, 83-84, 113-115

Objectives

- Multiply numbers 1 to 15 by 2 and 4
- Use appropriate symbols ($+,-, x, \div$)
- Recognise place value in numbers

Resources

Teacher: Writing board, counters, beads, unifix cubes, 1-100 number
boards
Learner: Workbook page 50, pencil, colouring pencils

Dictionary
Multiplication: Multiplication is repeated addition. e.g. $3+3+3+3=4 \times 3=12$

Teach multiplication

50

Term 3

Concrete

Ask learners to set out the following on their desk using beads, counters, stones or unifix cubes.
Place four counters on your desk.
Place another four, place another four, place another four.
How many counters do you have?

Let us count: $4,8,12,16$
Let us make an addition sum: $4+4+4+4=16$
Let us make a multiplication sum: $4 \times 4=16$

Abstract

Place counters in correct places on a 1 to 100 number board

1	2	3	0	5	6	7	8	9	10
11		13	14	15	1	17	18	19	0
21	22	23	0	25	26	27	28	29	30
31	2	33	34	35	0	37	38	39	0
41	42	43	0	45	46	47	4	49	50
51	0	53	54	55	5	57	58	59	0
61	62	63	0	65	66	67	6	69	70
71	2	73	74	75	0	77	78	79	8
81	82	83	0	85	86	87	8	89	90
91	2	93	94	95		97	98	99	

88

Content links: 29-31, 50, 52, 54, 83-84, 113-115
Grade 1 links: None
Grade 3 links: $23-25,27-28,34,49-51,53,55-56,78,81,83-85,87,89,113,117-118,120$

Learners complete the following. Answers:

Discuss with the learners. Answer: It looks like there are 12 cups, saucers and spoons and two tea pots and two sugar bowls.

$$
\begin{aligned}
& \text { Share } 23 \text { books between } 4 \text { children. } \\
& \text { Each get } 5 \text { Left over } 3
\end{aligned}
$$

$$
\begin{aligned}
& \text { Share } 15 \text { books between } 4 \text { children. } \\
& \text { Each get } 3 \text { Left over } 3
\end{aligned}
$$

Reflection questions
Can learners do the following?

- Multiply numbers 1 to 15 by 2 and 4
- Use appropriate symbols $(+,-, x, \div)$
- Recognise place value in numbers

Content links: $44,51,53,56,80,112,117$
Grade 1 links: 51,58-59, 83-84, 93, 115, 119-120
Grade 3 links: $9,29,47,64,76,79,82,86,88,111,114,116,119,121$

Objectives

- Copy, extend and describe simple number sequences up to at least 180
- Count forwards and backwards in $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5$, and 10 s

Resources

Teacher: Writing board, 1-100 number boards, counters
Learner: Workbook page 54, pencil and colouring pencils
Concrete resources:

| beads counters | stones | unifix cubes |
| :---: | :---: | :---: | :---: |

Dictionary

Pattern: something that repeats itself in a regular, predictable way Sequence: an ordered list of numbers or objects

Concrete

In pairs give learners a number board.

1		3		5	0	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Ask learners to place counters on 2, 4, 6. Ask them to extend the pattern: Say: "Let us use the number board to count forwards and backwards." Do the same with: • $3,6,9, \ldots \cdot 4,8,12, \ldots \cdot 5,10,15, \ldots$

89 Number patterns continued

$\begin{array}{lllll}5: 10 & 5: 20 & 5: 30 & 5: 40 & 5: 50\end{array}$

Homework

- 2, 4, 6, \qquad
- 3, 6, 9 \qquad
- $4,8,12$, \qquad
- $5,10,15$, \qquad -.-'.
- 20, 18, 16,
- $30,27,24$ \qquad -'
- $40,36,32$ \qquad - ——:
- $50,45,40$ \qquad - - - - - - - - -

Reflection questions

Can learners do the following?

- Copy, extend and describe simple number sequences up to at least 180
- Count forwards and backwards in $2 s, 3 s, 4 s, 5$, and 10 s

90 Fractions - halves

Objectives

- Identify halves
- Use and name half fractions

Resources

Teacher: Writing board, old cardboard or paper cut into shapes Learner: Workbook page 56, pencil and colouring pencils

beads	counters	stones	unifix cubes

Dictionary

Fractions: part of a whole. A fraction is a number written with the bottom part (the denominator) telling you how many parts the whole is divided into, and topp part (the numerator) telling how many of these parts you have, e.g. $\frac{3}{4}$ meaning 3 parts of the whole that has been divided into 4 equal parts.
Halve: divide into two parts of equal or roughly equal size

Introduce halves

56

Term 3

90 Fractions - halves continued

Oral questions

Show me anything that is divided into half in the class. (Make sure there are some examples in the class.)

Homework

- Draw five pictures or shapes and divide them in half.

Reflection questions

Can the learners do the following?

- Identify halves
- Use and name half fractions

91 Fractions - more halves

Objectives

- Identify halves
- Identify, recognise and write the half symbol ($\frac{1}{2}$)
- Identify one half of a number
- Recognise fractions in diagrammatic form

Resources

Teacher: Writing
board
Learner: Workbook
page 58 , pencil and colouring pencils

Dictionary

Half: one half of something, one of the parts when something is divided into two parts
Quarter: one fourth of something, one of the parts when something is divided into four parts

Introduce the half symbol. Learners must write one half like this. $\frac{1}{2}$

91 Fractions - more halves continued

Oral questions
How would you write one half as a symbol?

Homework

Draw three shapes or pictures. Divide each shape into two halves. Write the half fraction next to each half of the full shape or picture, e.g.:

Reflection questions

Can learners do the following?

- Identify halves
- Identify, recognise and write the half symbol $\left(\frac{1}{2}\right)$
- Identify one half of a number
- Recognise fractions in diagrammatic form

Make notes of common errors made by the learners.

92 Position and views

Objectives

- Describe the view of an object
- Match different views of the same object
- Describe if the object is near or far

Resources

Teacher: Writing board, boxes and other objects made from circles,
squares, rectangles and triangles
Learner: Workbook page 60, everyday objects

Dictionary

Views: Most objects have front, side, top, back and underside views.

Concrete

Give the learners some real life objects such as boxes. Ask them to show you the top of the box. Turn the box so that they see the top and say to them this is the top view. Do the same with the front, back and side view.

Concrete and representational

Make some drawings on the board and place some objects on your table. Ask the learner which drawing will fit the top view of which object.

92 Position and views continued

Ask your learners to look at the pictures and write the words on the picture to say what the person is seeing.

Ask the learners to look at the pictures and say if the car if near or far from the boy.

Ask the learners to draw a tree in both blocks. In the first block the tree must be near the girl and in the second block the tree must be far from the girl.
Answer: Each learner must use their own creativity and draw the trees as requested.

Homework

Ask your learners to do Question 4 activity at home and then write down what they were looking at and what they discovered.
Answer: Each learner will have a different answer of what they were looking at. Have a quick class discussion of what everyone discovered during this activity

Reflection questions

Can the learners do the following?

- Describe the view of an object
- Match different views of the same object
- Describe if the object is near or far

93 More and more data

Objectives

- Sort objects
- Draw a pictograph with one-to-one correspondence from data provided in picture form or in a table
- Draw a bar graph

Resources

Teacher: Writing board, shapes made from old cardboard or use plastic shapes
Learner: Workbook page 62, pencil, colouring pencils, shapes

Dictionary

Sort: to separate a group of things according to certain characteristics and then put them in a particular order
Pictograph: a simple chart in which pictures represent numbers to make it more interesting and easier to understand. A key is often included to indicate what each picture or symbol represents. All the pictures must be of the same size, but a fraction of a picture can be used to show the respective fraction of that amount.
Bar graph: a graph drawn using rectangular bars to show how large each value is. The bars can be horizontal or vertical.

Concrete

In groups give learners 8 circles, 6 triangles, 5 squares and 10 rectangles. Ask them to sort it according to shapes.

Ask learners to place the shapes in columns.

Ask:

- How many circles are there?
- How many triangles are there?
- How many squares are there?
- How many rectangles are there?
- Which shape do you have most of?
- Which shape do you have least of?

Learners look at the picture and discuss it.

93 More and more data continued

Oral questions

I have 6 bananas and 8 oranges. Which do I have more of? Which do I
have least of?

94a Fractions - quarters

Objectives

- Identify quarters
- Identify, recognise and write the quarter symbol $\left(\frac{1}{4}\right)$
- Identify one quarter of a number
- Recognise fractions in diagrammatic form

Resources

Teacher: Writing board, old cardboard or paper cut into shapes
Learner: Workbook page 64, pencil, colouring pencils

Dictionary

Fraction: part of a whole, a number written with the bottom part (the denominator) telling you how many parts the whole is divided into, and top part (the numerator) telling how many of these parts you have,
e.g. $\frac{3}{4}$ meaning 3 parts of the whole that has been divided into 4 equal

4 parts
Halve: divide into two parts of equal or roughly equal size
Quarter: divide into four parts of equal or roughly equal size
Introduce the quarter symbol $\frac{1}{4}$

Concrete

Give learners various shapes cut from pieces of old cardboard.

Learners fold each shape into quarters. Learners open the shapes. Tell learners that these shapes are exactly divided into quarters that are the same size.

Draw it on the board. Point to one of the quarters and say: "This is one quarter."

Learners look at the picture and discuss it. They must colour the last uncoloured quarter of the same
 kind of objec \dagger the correct colour(s).

94a Fractions - quarters continued

Oral questions

Show me anything that is divided into quarters in the class. (Make sure there are some examples in the class.)

着。
 Homework

Learners colour one quarter of the animals.

Draw five pictures or shapes and divide each of them into quarters.

Learners must colour one quarter of the shape.
Answer:

Reflection questions

Can learners do the following?

- Identify quarters
- Identify, recognise and write the quarter symbol $\left(\frac{1}{4}\right)$
- Identify one quarter of a number
- Recognise fractions in diagrammatic form

94b Fractions - more quarters

Objectives

- Use and name fractions including quarters
- Recognise fractions in diagrammatic form
- Recognise that one half is the same as two quarters

Resources

Teacher: Writing board, old cardboard or paper cut into shapes,
counters
Learner: Workbook page 66, pencil and colouring pencils

Dictionary

Fraction: part of a whole, a number written with the bottom part (the denominator) telling you how many parts the whole is divided into, and top part (the numerator) telling how many of these parts you have,
e.g. ${ }^{4}$ meaning 3 parts of the whole that has been divided into 4 equal parts
Halve: divide into two parts of equal or roughly equal size Quarter: divide into four parts of equal or roughly equal size

Teach fractions

Term 3

940 Fractions - more quarters continued

Learners colour in a quarter of the fruit in each group and say what a quarter of the number of the fruit in each group is. Answers:

Learners must draw more shapes to make each quarter equal. Answers:

00 1000000 $\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}$

Learners show one quarter of the shapes. Answers:

Learners tick which is bigger. Answers:

one half
one quarter

Oral questions

I have 4 sweets. I divide them between 4 children. How many sweets will each child get? (Learners answers should be in fractions.)

Reflection questions

Can learners do the following?

- Use and name fractions including quarters
- Recognise fractions in diagrammatic form
- Recognise that one half is the same as two quarters

95 Geometric patterns

Objectives

- Copy, extend and describe simple patterns made with drawings of lines, shapes and objects
- Create own patterns

Resources

Teacher: Writing board, three kinds of coloured shapes made from
cardboard
Learner: Workbook page 68, pencil and colouring pencils

Dictionary

Pattern: something that repeats itself in a regular, predictable way
Geometric pattern: a visual pattern formed of geometric shapes and
typically repeating
[Note that a geometric pattern made of shapes is not the same as a geometric sequence (which is a a sequence of numbers made by multiplying each number by another number -- $1,2,4,8$, $16,32 \ldots$ is a geometric sequence where each number is multiplied by 2 to get the next number).]

Introduce number patterns

Concrete

In pairs/groups give learners:

- 10 shapes, 2 types. Ask them to make a pattern.
E.g.

- 12 shapes, 3 types

Semi-abstract
Draw the following on the board. Ask learners to make their own pattern using these three shapes.

Learners must look at the two sets of patterns and match them. They can colour the matching pattern the same colour.

95 Geometric patterns continued

Term 3

96 Data sorting

Objectives

- Sort objects
- Represent data in a pictograph
- Draw a bar graph
- Answer questions about data in a pictograph or bar graph

Resources

Teacher: Writing board
Learner: Workbook
page 70, pencil,
colouring pencils

Learners sort the weather objects. Learners must make their own drawing. Write the totals for each in the answer boxes.

Answers:

- 7 cloud
- 9 sunshine
- 8 snow (or frost or hail)
- 10 rain
- 5 lightning

Learners must draw a pictograph of their sorted weather conditions. Answers:

		$\begin{aligned} & 5 \\ & 5 \end{aligned}$	항	
(2) 0	C00		(6) 0^{6}	

Oral questions

If we had 10 sunny days and two rainy days, which type of weather did we have most of?

Homework

Give learners the
following pictures
to copy in their books.
Sort it.
Draw a pictograph.
Draw a bar graph.

Reflection questions

Can the learners do the following?

- Sort objects
- Represent data in a pictograph
- Draw a bar graph
- Answer questions about data in a pictograph or bar graph

97 Numbers 150-180

Content links: 2-4, 35, 65-66, 69, 98, 100
Grade 1 links: 9-11, 14, 17-18, 33-34, 36, 38-39, 65-69, 97-101
Grade 3 links: $3,23-25 b, 33,41,43,45,65-67,69-71,98-101,103-104$

Objectives

- Identify, recognise and read number symbols to 180
- Write number names $0-180$
- Count forwards and backwards between 0-180
- Compare whole numbers
- Recognise the place value of numbers up to 180

Resources

Teacher: Writing board, 1-200 number boards, place value cards,
base 10 blocks
Learner: Workbook page 72, pencil, colouring pencils

Dictionary

Number: A number is mathematical value, expressed by a word, symbol, or figure, that represents a particular quantity and used in counting and doing calculations, e.g. 162.
Number names: e.g. one hundred and sixty two
Order: arrangement according to size, amount, value or some other characteristic, e.g. arrange (order) from small to large - 52 469, 52470 , 52471
Compare: to describe as bigger as, smaller as or equal to, e.g. 2345 is smaller than 2435

Introduce numbers from 150-180
Abstract In groups
Give learners 1 to 200 number boards,
base ten blocks and place value cards.

- Use the number board to count
forwards and backwards in ones
 from 150-180
- Ask learners to point to 169 .
- Ask them to show the number using base ten blocks.
- Ask them to show it with their number cards.

97 Numbers 150-180 continued

Grade 1 links: $9-11,14,17-18,33-34,36,38-39,65-69,97-101$
Grade 3 links: 3, 23-25b, 33, 41, 43, 45, 65-67, 69-71, 98-101, 103-104

Homework

Learners do question 6 for homework. Learners must cut out three numbers between 150 and 180 from a magazine or newspaper. Paste them here in biggest to smallest order. Answer: Any three of 179, 178, 177, 176, $175,174,173,172,171,170,169$, $168,167,166,165,164,163,162$, 161, 159, 158, 157, 156, 155, 154, 153, 152, 151

Reflection questions
Can the learners do the following?

- Identify, recognise and read number symbols to 180
- Write number names 0-180
- Count forwards and backwards between 0-180
- Compare whole numbers
- Recognise the place value of numbers up to 180

98 Numbers 170-200

Content links: $2-4,35,65-66,69,97,100$
Grade 1 links: 9-11, 14, 17-18, 33-34, 36, 38-39, 65-69, 97-10
Grade 3 links: $3,23-25 \mathrm{~b}, 33,41,43,45,65-67,69-71,98-101,103-104$

Objectives

- Identify, recognise and read number symbols to 200
- Write number names 0-200
- Count forwards and backwards between 0-200
- Compare whole numbers
- Recognise the place value of numbers up to 200

Resources

Teacher: Writing board, 0 - 200 number boards, base ten blocks, number cards
Learner: Workbook page 74, pencil, colouring pencils

Dictionary

Number: A number is mathematical value, expressed by a word,
symbol, or figure, that represents a particular quantity and used in
counting and doing calculations, e.g. 162.
Number names: e.g. one hundred and sixty two
Order: arrangement according to size, amount, value or some other characteristic, e.g. arrange (order) from small to large - 52 469, 52 470, 52471
Compare: to describe as bigger as, smaller as or equal to, e.g. 2345 is smaller than 2435

Introduce numbers from 170-200

Abstract In groups

Give learners 1 to 200 number boards, base ten blocks, number cards.

- Use the number board to count
forwards and backwards in ones from 170-200.
- Ask learners to point to 183.
- Ask them to show the number
using base ten blocks.
- Ask them to show it with the place value number cards.

Content links: $2-4,35,65-66,69,97,100$
98 Numbers 170-200 continued
Grade 1 links: 9-11, 14, 17-18, 33-34, 36, 38-39, 65-69, 97-101
Grade 3 links: 3, 23-25b, 33, 41, 43, 45, 65-67, 69-71, 98-101, 103-104

Learners must write which numbers come between: Answer:
170 and 175: 171, 172, 173, 174
198 and 195: 197, 196
180 and 175: 179, 178, 177, 176
168 and 173: 169, 170, 171, 172
200 and 196: 199, 198, 197
Learners must give two numbers smaller and two numbers bigger than the given number. Answer:

Smaller		Number	Bigger	
168	169	170	171	172
196	197	198	199	200
183	184	185	186	187
172	173	174	175	176
179	180	181	182	183

Homework

Learners do Question 6 for homework. Learners must cut three numbers between 170 and 200 from a magazine or newspaper. Paste it here from biggest to smallest. Answer: 199,
198, 197, 196, 195, 194, 193, 192, 191, 190, 189, 188, 187, 186, 185, 184, 183, 182, 181, 180, 179, 178, 177, 176, 175, 174, 173, 172, 171

Reflection questions

Can the learners do the following?

- Identify, recognise and read number symbols to 200
- Write number names $0-200$
- Count forwards and backwards between 0-200
- Compare whole numbers
- Recognise the place value of numbers up to 200

Objectives

- Recognise and name 2-D shapes - circles, triangles, squares, rectangles
- Recognise triangles, squares and rectangles in any position
- Describe, order and compare 2-D shapes according to shape and size

Resources

Teacher: Writing board, shapes: squares, rectangles and triangles cut
from cardboard or plastic.
Learner: Workbook page 76, scissors, scrap paper and cardboard

Dictionary

Triangle: a 2-D shape with three straight sides
Square: a 2-D shape with four straight sides of equal length, four right angles and the opposite sides are parallel
Rectangle: a 2-D shape with four straight sides and four right angles, where the pairs of opposite sides are of equal length and are also parallel
Circle: a 2-D shape with a curved side made by drawing a single curve that is always the same distance from a centre of the shape

99 2-D shapes continued

Ask the learners to colour the big circles in red and the small circles in yellow, the big rectangles in red and the small rectangles in yellow. Answer:

Ask the learners to colour in all he shapes that match the first shape. Answer:

Ask the learners to draw their own picture using only squares, rectangles, triangles and circles. Answer: Learners needs to be creative and draw their own pictures.

Homework

Ask learners to cut out squares, triangles, rectangles and circles from old papers and magazines and paste their own picture in their books.
Answer: Each picture will be unique and different

Reflection questions

Can the learners do the following?

- Recognise and name 2-D shapes - circles, triangles, squares, rectangles
- Recognise triangles, squares and rectangles in any position
- Describe, order and compare 2-D shapes according to shape and size

100 Numbers 0-200

Objectives

- Identify, recognise and read number symbols to 200
- Write number names 0 to 200
- Count forwards and backwards between 0 and 200
- Compare whole numbers
- Recognise the place value of numbers up to 200
- Use expanded notation up to 200

Dictionary

Place value: the value of where the digit is in the number, such as units, tens, hundreds, etc.
In the decimal number system, the value of a digit depends on its place, or position, in the number. Each place has a value of 10 times the place to its right. Examples:
$55555=50000+5000+500+50+5$
$55555=5$ ten thousands +5 thousands +5 hundreds +5 tens +5 units $95618=90000+5000+600+10+8$
$95618=9$ ten thousands +5 thousands +6 hundreds +1 ten + eight units
Expanded notation: writing a number to show the value of each digit, e.g. $96581=90000+6000+500+80+1$

Resources

Teacher: Writing
board, number
cards
Learner:
Workbook
page 78, pencil and colouring
pencils

Introduce capacity

Concrete
Ask learners to make numbers using place value number cards.
Ask them to put all the units together, the tens and the hundreds.
Teacher says: Show me a 40 and a 3 card. Make a number. (43)
How will you say the number? (Forty-three)
Show me a 100, a 40 and a 3 card. Make a number. (143)
How will you say the number? (One hundred and forty-three)
Do a few more numbers including 100.

Learners must look at the picture and discuss it. Ask them how many different numbers can be made from these number cards.

Oral question

- What is $100+50+7$?
- What is $100+10+8$?
- What is $100+90+9$?

100 Numbers 0-200 continued

Content links: 2-4, 35, 65-66, 69, 98

Grade 3 links: $3,23-25 b, 33,41,43,45,65-67,69-71,98-101,103-104$

Learners mus \dagger fill in the empty boxes.

Learners must add the following: Answers:

$60+4=$	64
$90+8=$	98
$40+7=$	47
$30+6=$	36
$50+2=$	52

$100+20+3=$	123
$100+40+9=$	149
$100+70+8=$	178
$100+60+1=$	161
$100+50+5=$	155

Learners must fill in the missing number:
$70+\mathbf{1}=71$

$100+50+3=153$	
$30+\mathbf{8}=38$	$100+60+9=169$
$60+\mathbf{9}=69$	$100+70+8=178$
$20+\mathbf{4}=24$	$100+90+1=191$
$80+5=85$	$100+50+7=157$

Learners must make their own sums. Answer: learners' own sums

Homework
Learners do question 6 for homework.
What number is the biggest? What number is the smallest?
Answers: The biggest number is 159 and the smallest number is 149 .

Reflection questions
Can the learners do the following?

- Identify, recognise and read number symbols to 200
- Write number names 0 to 200
- Count forwards and backwards between 0 and 200
- Compare whole numbers
- Recognise the place value of numbers up to 200
- Use expanded notation up to 200

101 Addition and subtraction

Content links: 5, 21, 23a-24, 37-39b, 41-42b, 72-74, 77, 102, 104-105
Grade 1 links: 15, 19-22, 73, 77, 104
Grade 3 links: 5, 24, 27, 33, 35a-35b, 37-39, 41-42, 45-47, 73-75, 105, 107-109

Objectives

- Add to 99
- Subtract from numbers up to 99
- Use building up and breaking down of numbers to perform calculations

Resources

Teacher: Writing board, place value number cards, beads or counters
Learner: Workbook page 80, pencil, colouring pencils

Dictionary

Addition: finding the total, or sum, by combining two or more numbers, e.g. $5+11+3=19$

Subtraction: taking one number away from another, e.g. if you have 5 and you subtract 2 , you will be left with 3 .

The symbol of subtraction is

E.g. $5-2=3$

A subtraction is the inverse operation of addition

Introduce addition and subtraction

80

Term 3
Mathematics Teacher Guide - Grade 2

	Learners must estimate and then calculate.		
		Estimate Calculate	Learner's own answer 85
		Estimate Calculate	Learner's own answer 102
	Learners must calculate using their own method.$\begin{array}{ll} 53+39 & 92-48 \\ \text { Answer: } 92 & \text { Answer: } 44 \end{array}$		
	Homework Learners must do Question 5 for homework. Learners must add 39 and 29. Answer: 68 What is 43 less 19. Answer: 24 Subtract 45 from 74. Answer: 29 What is 82 take away 69. Answer: 13		
Reflection questions Can the learners do the following? - Add to 99 - Subtract from numbers up to 99 - Use building up and breaking down of numbers to perform calculations			

102 Addition and subtraction again

Objectives

- Add to 99
- Subtract from numbers up to 99
- Use building up and breaking down of numbers to perform calculations

Resources

Teacher: Writing board, abacus, place value number cards
Learner: Workbook page 82, pencil, colouring pencils

Dictionary

Addition: finding the total, or sum, by combining two or more numbers,
e.g. $5+11+3=19$

Subtraction: taking one number away from another, e.g. if you have 5 and you subtract 2 , you will be left with 3 .

The symbol of subtraction is
E.g. $5-2=3$

A subtraction is the inverse operation of addition.

Continue with addition and subtraction

Concrete or semi-abstract:

Tens: Use an abacus or draw an abacus on the board (If the learners are not familiar with an abacus you will need to explain how it is used.) Let us count in tens (point to each row). E.g. 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

Ask learners to count to 50: 10, 20, 30, 40, 50.
How many sums can we make giving an
answer of 50 using tens only.
Answer: $10+40,20+30,10+10+30,10+10+10+20,10+10+10+10+$ 10 and variations in the order of the tens in these

102 Addition and subtraction again cont...

103 Shape patterns

Objectives

- Identify, describe, and copy geometric patterns
- Create own patterns using shapes

Resources

Teacher: Writing board
Learner: Workbook page 84, pencil, colouring pencils

Dictionary

Pattern: something that repeats itself in a regular, predictable way Geometric pattern: a visual pattern formed of geometric shapes and typically repeating
[Note that a geometric pattern made of shapes is not the same as a geometric sequence (which is a a sequence of numbers made by multiplying each number by another number -- $1,2,4,8,16,32 \ldots$ is a geometric sequence where each number is multiplied by 2 to get the next number).]

103 Shape patterns continued

104 More addition and subtraction

Objectives

- Add to 99
- Subtract from numbers up to 99
- Use number lines when performing calculations

Resources

Teacher: Writing board, beads and number lines
Learner: Workbook page 86, pencil, colouring pencils

Dictionary

Addition: finding the total, or sum, by combining two or more numbers, e.g. $5+11+3=19$

Subtraction: taking one number away from another, e.g. if you have 5 and you subtract 2 , you will be left with 3 .

The symbol of subtraction is

E.g. $5-2=3$

A subtraction is the inverse operation of addition.

Term 3

104 More addition and subtraction cont...

Learners estimate and then calculate the number of beads.
Answers:
Estimate $=$ Learner's own answer
Calculate $50+30+9+9=98$

Estimate $=$ Learner's own answer

Calculate $96-48=48$$\quad$| Learners do calculations using their own methods. |
| :--- |
| $74+18$ |
| Answer: 92 |

105 Even more addition and subtraction

Objectives

- Add to 99
- Subtract from numbers up to 99
- Use number lines when performing calculations

Resources

Teacher: Writing board, beads and number lines
Learner: Workbook page 86, pencil, colouring pencils, beads and
number lines

Dictionary

Addition: finding the total, or sum, by combining two or more numbers, e.g. $5+11+3=19$

Subtraction: taking one number away from another, e.g. if you have 5 and you subtract 2 , you will be left with 3 .

The symbol of subtraction is

E.g. $5-2=3$

A subtraction is the inverse operation of addition

105 Even more addition and subtraction cont...

Learners solve the word sums and do a drawing. Answers:
$R 42+R 29=R 71 \quad R 78-R 34=R 44$

Homework
Learners do Question 7 for homework.

Reflection questions

Can the learners do the following?

- Add to 99
- Subtract from numbers up to 99
- Use number lines when performing calculations

106 3-D objects

Content links: 32, 75-76
Grade 1 links: 23, 31, 87-88, 106
Grade 3 links: 10, 90, 124

Objectives

- Recognise and name 3-D objects - balls (spheres), boxes (prisms) and cylinders
- Describe, sort and compare 3-D objects in terms of size and whether they can roll or slide
- Build with 3-D objects

Resources

Teacher: Writing board, objects such as tissue box, netball ball, cool drink can, a pipe, printing paper box and a marble
Learner: Workbook page 96 , pencil

Dictionary

Sphere: This is a 3-D object shaped like a ball. Every point on the surface of the sphere is the same distance from the very centre of the sphere.
Prism: This is a 3-D object which has two faces identical and parallel to each other (the ends) and a number of flat sides joining the ends. Prisms are named after the shape of the ends, e.g. rectangular prism, triangular prism. The most common form of a prism in everyday life is a square or rectangular box
Cylinder: This 3-D object has two identical flat ends that are circular and one curved side

Teach 3-D objects

Concrete

Place the following objects on your table, tissue box, netball ball, cool drink can, a pipe printing paper box and a marble. Ask learner to say if the object has a:

- ball shape
- box shape
- cylindrical shape

Concrete

Ask the learners to describe the above objects by saying if it will roll or slide.

In groups give the learners two objects, such as a ball and a box. Ask them if they can balance one on top of one another. Ask questions such as:

- Can you balance a ball on a box?
- Can you balance a box on a ball?

Give them a cylinder.

- Can you balance a cylinder on a ball? Box?
- Can you balance all three objects on top of each other?

106 3-D objects continued

Though the cylinders can both slide and roll, the first cylinder is upright and can only slide, the second cylinder is horizontal and will roll.

Homework

Ask the learners to write down a few things at home that looks like a cylinder, ball and a box.
Answer: Each learner will have different answers depending on what they will see or find at home.

Reflection questions

Can the learners do the following?

- Recognise and name 3-D objects - balls (spheres), boxes (prisms) and cylinders
- Describe, sort and compare 3-D objects in terms of size and whether they can roll or slide
- Build with 3-D objects

107 Even more data

Objectives

- Sort objects
- Collect data
- Draw a pictograph with one-to-one correspondence from data provided in picture form or in a table
- Draw a bar graph
- Analyse data from data representations in a pictograph or bar graph

Resources

Teacher: Writing board, shapes made from old cardboard or plastic
Learner: Workbook page 92, pencil, colouring pencils

Dictionary

Sort: to separate a group of things according to certain characteristics and then put them in a particular order
Pictograph: This is a simple chart in which pictures represent numbers to make it more interesting and easier to understand. A key is often included to indicate what each picture or symbol represents. All the pictures must be of the same size, but a fraction of an picture can be used to show the respective fraction of that amount.
Bar graph: a graph drawn using rectangular bars to show how large each value is. The bars can be horizontal or vertical.

107 Even more data continued

Homework

Give the learners the following
pictures to copy in their books.
Sort them.
Draw a pictograph.
Draw a bar graph.

Reflection questions

Can the learners do the following?

- Sort objects
- Collect data
- Draw a pictograph with one-to-one correspondence from data provided in picture form or in a table
- Draw a bar graph
- Analyse data from data representations in a pictograph or bar graph

108 Calculating money

Objectives

- Calculate combinations of South African coins
- Calculate combinations of South African notes
- Calculate combinations of South African coins and notes
- Solve money problems involving totals and change in rands and cents

Resources

Teacher: Writing book, some real money (coins and notes)
Learner: Workbook page 94, play coins and money notes from Cut-outs 3 or 5

Dictionary

Coin: A South African coin is a small piece of circular printed metal, authorised by government for the use as money.

Note: A South African note is a regular piece of printed paper, authorised by government for the use as money.

Concrete

In groups give learners some real coins. Ask learners to show you the following coins:

- Ask the learners which coins will make 20c? 30c? 40c? 50c? 60c? 70c? 80c? 90c? R1?
- Ask the learners which coins will make R3? R4? R6? R7? R8? R9?

In groups give learners some real notes. Ask learners to show you the following notes:

- Ask the learners how can they recognise the value of each note without looking at the number on the note.
- Ask the learners which notes will make R30? R40? R60? R70? R80? R90?
- Ask learners which combination of coins and notes will make, e.g. R75? R82? R98?

108 Calculating money continued

Ask the learners to draw money and make a number
sentence to show what the cost would be if Sipho bought 3 hamburgers.
Answer:
$R 12,50+R 12,50+12,50=R 37,50$ (there are a few combinations)

Ask the learners to draw money and make a number sentence to show what the cost would be if Sipho bought 4 hamburgers.
Answer:
$R 12,50+R 12,50+12,50+12,50=R 50$ (there are a few combinations)

Homework
Ask the learners to work out how many hamburgers Sipho can buy for R87,50 Answer: 7

Reflection questions

Can the learners do the following?

- Calculate combinations of South African coins
- Calculate combinations of South African notes
- Calculate combinations of South African coins and notes
- Solve money problems involving totals and change in rands and cents

109 Solve money problems

Objectives

- Solve money problems involving totals and change in rands and cents
- Solve money problems using drawings

Resources

Teacher: Writing board
Learner: Workbook page 96, paper and pencil, play money coins from Cut-out 3 or 5.

Dictionary

Problem: A mathematical problem is a question that can be can be represented, analyzed and solved using the methods of mathematics. In mathematics these problems involve numbers (though the numbers may be presented in words or in a story).

[^1]
Concrete

The learners must work with play coins such as R2. Ask them to place one R2 coin on their desks. How much is it? Place another coin below it. How much is it now? Carry on like this until the leaners have 7 coins below each other. How much is it in total?

109 Solve money problems continued

Ask the learners to complete the table and help Sheila find the right amount for larger orders. Answer:

Ask the learners to work out the same table if Sheila sold the hotdogs for R5 each. Answer:

Ask the learners to complete the table based on Sedrick

 charging R5 per hour.

Ask learners to add R20 for travel cost each day and complete the table. Answer:

Number of hours	1	2	3	4	5	6	7	8	9	10
Cost in Rand	10	20	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{7 0}$	$\mathbf{8 0}$	$\mathbf{9 0}$	$\mathbf{1 0 0}$

Ask the learners to draw a picture to show what Sedrick's cost was for 8 hours at R5 per hour.
Answer: Learners must be creative and make their own drawings to be equal to R40

Homework
Ask learners to do this question at home.
Answer:

Reflection questions

Can the learners do the following?

- Solve money problems involving totals and change in rands and cents
- Solve money problems using drawings

110 Grouping and sharing

Objectives

- Share numbers or objects from 0 to 50 in equal groups (and remainders)
- Solve number problems that involve equal sharing and grouping in context and explain own solutions

Resources

Teacher: Writing board, unifix cubes
Learner: Workbook page 98, pencil and colouring pencils

Dictionary

Group: divide items/objects into equal groups (sets), e.g. groups of 12

In pairs, give learners 3 trains of unifix cubes.

Share it between two. They put them in groups of 15 cubes each. We have 2 groups of 15 . Each child will get 1 train and a half train.

In pairs, give learners 3 trains and 4 single cubes. Share it between two. They put them in groups of 17 cubes each. We have 2 groups of 17 . Each child will get 1 train and 5 cubes (a half train) and 2 single cubes.

Answers:

- 44 cubes and each gets 22
- 28 cubes and each gets 14
- 36 cubes and each gets 18

110 Grouping and sharing continued

	Learners draw the groups and write a sum for each. Answer:	 Share 12 counters between 4 . \square $-\operatorname{Minussm}_{12-3-3-3-3=0}$ \div Divison sum: 12 $\div 4=3$	4 groups of IO $\begin{aligned} & +\begin{array}{l} \text { Plus sum } \\ \\ \\ \times+10+10+10 \\ \times \\ \times \text { Tines sum: } 4 \times 10=40 \end{array} \end{aligned}$ Share 36 counters between 3 . $\begin{array}{lll}10000 & 1808 & 8080 \\ 080 & 0808\end{array}$ $\begin{array}{l\|l} -\begin{array}{l} \text { Minus sum: } \\ 36-12-12-12=0 \end{array} \\ \div \text { Division sum: } 36 \div 3=12 \end{array}$
	Learners must calculate the total numbers in sets of groups and the number in groups made by dividing up a number. Answer: - 2 groups of 7: 14 - 4 groups of 5: 20 - Share 18 by 2: 9 - Share 35 by 5: 7 - 3 groups of 8: 24 - 2 groups of 15: 30 - Share 24 by 3: 8 - Share 50 by 10: 5		
Reflection questions Can the learners do the following? - Share numbers or objects from 0 to 50 in equal groups (and remainders) - Solve number problems that involve equal sharing and grouping in context and explain own solutions			

111 Even more capacity

Objectives

- Estimate, measure, compare, order and record the quantities (volumes) in containers such as measuring jugs with numbered calibration lines

Resources

Teacher: Writing board, containers for liquids (cups, litre bottles,
measuring jugs
Learner: Learner workbook page 100, pencil and colouring pencils

Dictionary

Capacity: the amount that something can hold. Usually it means volume, such as millilitres (ml) or litres (I) in metric. Example: "The bucket has a capacity of 9 litres"

Non-standard measures: In grade 2 we make use of non-standard measures, e.g. the bottle can hold 4 cups of water.

Introduce capacity

Concrete

You will demonstrate this on your desk or outside the classroom. Show learners that 4 cups fill the container (1 litre container). Ask them, "If I have 2 containers how many cups do I need to fill it? 3 containers? 4 containers? 5 containers?"

111 Even more capacity continued

Learners must colour in up to the mark where the spoons fill the jug with liquid.
Answers:

- Learners colour up to the 3rd line
- Learners colour up to the 2 nd line
- Learners colour up to the 5th line
- Learners colour up to the 4 th line
- Learners colour up to the 3rd line

What will happen if you pour 15 spoonsful in the measuring jug? Answer: it will overflow

It takes five cups of water to fill a large jug. How many cups of water do you need to fill the following number of jugs?
Answer:
10 cups
20 cups
15 cups
25 cups

It takes five cups of water to completely fill this measuring jug. How many more cups of water do you need to fill the measuring jug or jugs? Answers: [note that each mark on the measuring jug works out at half a cup.]

Paste pictures of 1 litre, 2 litre and 3 litre containers.

Homework
 Do question
 5 for

homework.

Reflection questions

Can learners do the following?

- Estimate, measure, compare, order and record the quantities (volumes) in containers such as measuring jugs with numbered calibration lines

3 Cups will fill one container. How many cups will fill $2,3,4$ and 5 containers.

112 Number patterns

Resources

Teacher: Writing
board
Learner: Workbook
page 102, pencil,
colouring pencils

Objectives

- Count in $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}$ and 5 s from 0-200
- Identify and use pattern rules
- Copy, extend and describe simple number sequences up to 200
- Describe, order and compare numbers
- Use numbers to show order, place or position

Dictionary

Counting forwards: count on from a given number following a rule, e.g.
12, 14, 16,
Counting backwards: count back from a given number following a rule: e.g. 100, 95, 90,
Pattern: something that repeats itself in a regular, predictable way
Extend a pattern: identify the rule using the given numbers and then
carry on with it
Twos: $2,4,6,8, \ldots 100$
Threes: 3, 6, 9, ... 99
Fours: $4,8,12, \ldots 100$
Fives: $5,10,15, \ldots 100$

Introduce the concept of identifying a rule (e.g. counting forwards or backwards by a certain number)

Abstract

Draw a number worm on the board.

In the first block is 103, the second block is 104 and the sixth block is 108. What numbers will be in the other blocks? How do you know? How did you work it out. Use the same worm giving examples of counting in $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}$ and 5 s .
Draw a number line on the board.

Ask the learners to extend the number line. Why did you use these numbers? How did you work it out? Do simlar examples with $3 \mathrm{~s}, 4 \mathrm{~s}$ and 5 s .

Learners must look at the picture and discuss it. Place the cards in order. First from big to small, then small to big.

112 Number patterns continued

Learners must complete the following:
$100,102,104,106,108,110,112,114$

113 Multiply by 3

Objectives

- Multiply numbers 1 to 10 by 3
- Use appropriate symbols ($+,-, x, \div$)

Resources

Teacher: Writing board, 1-100 number boards, counters, place value number cards
Learner: Workbook page 104, pencil and colouring pencils

Dictionary

Multiplication: The basic idea of multiplication is repeated addition.
E.g. $3+3+3+3=12,3 \times 4=12$

Concrete

Ask learners to set out the following on their desk using beads, counters, stones and unifix cubes.
Place three counters on your desk.
Place another three, place another three, place another three.
How many counters do you have?

Let us count: 3, 6, 9, 12 .
Let us make an addition sum: $3+3+3+3=12$
Let us make a multiplication sum: $4 \times 3=12$

Abstract

Place counters on the correct places on the 1 to 100 number board.

113 Multiply by 3 continued

Learners look at the pictures and	3		4		12	3	\times	2	6
complete the	Number of mice					Number of mice		Ears	

Learners fill in the table: Answers:

3	6	9	12	15	18	21	24	27	30
30	27	24	21	18	15	12	9	6	3

Learners complete the following: Answers:

Learners complete the following: Answers:

Sort the dropped stationery into two sets.
Answer: Each set has: pair of scissors, rubber, eleven pencils
Complete the following:

Share 9 pencils between 3 children.	Share 16 crayons between 3 children. Will there be any crayons left over?
Each get$9 \div 3=3$	Each get $16 \div 3=5$ and 1 over

Homework

Do question 5 for homework

Reflection questions
Can learners do the following?

- Multiply numbers 1 to 10 by 3
- Use appropriate symbols ($+,-, x, \div)$

114 Mixed multiplication

Objectives

- Skip count
- Group objects
- Do repeated addition
- Use arrays to calculate
- Multiply numbers 1 to 10 by 2,3,4 and 5

Resources

Teacher: Writing board, counters
Learner: Workbook page 106, paper, pencils

Dictionary

Skip counting: Skip Counting is counting by a number that is not 1. E.g. count in twos: 2, 4, 6, 8
Equal groups: E.g. Divide 8 into equal sized groups of 2
Array: An array is a systematic arrangement of objects, usually in rows and columns.
Repeated addition: E.g. $2+2+2+2+2=8$
Multiplication number sentence: E.g. $2 \times 4=8$

Teach mathematics

Concrete

Ask learners to make 3 groups of $\mathbf{4}$ with counters.
Ask the learners to count it: $4,8,12$

Do a few more examples like this.
Representational
Show learners how to draw an array. We will now say 3 rows of 4 . Set it out using counters. Draw it.

Abstract

Ask the learners to write it as :

- an addition number sentence: $4+4+4=12$
- a multiplication number sentence: $3 \times 4=12$

Oral question

Ask the learners to look at the pictures in their workbooks and say what they notice. Answer: Different wording that means the same thing

114 Mixed multiplication continued

115 More multiplication

Objectives

- Multiply numbers 1 to 10 by $2,3,4$ and 5
- Use appropriate symbols ($+,-, x, \div$)

Resources

Teacher: Writing board, counters, number boards
Learner: Workbook page 108, pencil, colouring pencils

Dictionary
Multiplying in 2s: E.g. $1 \times 2,2 \times 2,3 \times 2$, \ldots
Multiplying in 3s: E.g. $1 \times 3,2 \times 3,3 \times 3$,
Multiplying in 4s: E.g. $1 \times 4,2 \times 4,3 \times 4$,
Multiplying in 5s: E.g. $1 \times 5,2 \times 5,3 \times 5$,

Number board
Use the number board to count in $2 s, 3 s, 4 s$ and $5 s$.

115 More multiplication continued

Learners must use their own method to solve this.
Answers: $12 \times 2=24 \quad 16 \times 2=32$
Learners complete:

	1	2	3	4	5	6	7	8	9	10
$\times 3$	3	6	9	12	15	18	21	24	27	30

Answers: $13 \times 3=3915 \times 3=45$
Learners complete:

	1	2	3	4	5	6	7	8	9	10
$\times 4$	4	8	12	16	20	24	28	32	36	40

Learners use their own method to solve this.
Answers: $\mathbf{1 1 \times 4 \times 4 = 5 4} \mathbf{1 4 \times 5 6}$
Learners complete:

	1	2	3	4	5	6	7	8	9	10
$\times 5$	5	10	15	20	25	30	35	40	45	50

Learners use their own method to solve this.
Answers: $12 \times 5=60$
$16 \times 5=80$
There are 12 oranges in a bag. There are 4 bags. How many oranges are there? Answers:

- 4 bags? 48 oranges $\cdot 5$ bags? 60 oranges
- 3 bags? 36 oranges $\cdot 2$ bags? 24 oranges

Homework

Learners can do question 2 for homework.

Reflection questions

Can learners do the following?

- Multiply numbers 1 to 10 by $2,3,4$ and 5
- Use appropriate symbols $(+,-, x, \div)$

$116 a$ Days of the week

Content links: 14, 22, 113-114 Grade 1 links: 32 Grade 3 links: 80

Objectives

- Name and sequence the days of the week
- Calculate elapsed time in days

Resources

Teacher: Writing board, flashcards with days of the week, calendar
Learner: Workbook page 110, pencil, colouring pencils

Dictionary

Days of the week: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday
Elapsed time in days: Note that there are different conventions about how we count the days between two dates based on whether to include the start date and the end date or to exclude them. The most common convention is to include the start date but not the end date

Introduce days of the week

Concrete

Stick or write the days of the week in random order on the board. Ask learners to come to the front and place the days in order. Do the same activity but start with Wednesday, Thursday and Friday. Stick Monday and Wednesday on the board. How many days are between Monday and Wednesday? How many days is it from Monday to Wednesday? Do more examples.

116 a Days of the week continued

Oral question

Name the days of the week. How many days is it from Monday to
Wednesday?

Homework

- Learners complete question 5 for homework

Reflection questions
Can learners do the following?

- Name and sequence the days of the week
- Calculate elapsed time in days

$116 a$ Months of the year

Objectives

- Name and sequence the months of the year
- Calculate elapsed time in months

Resources

Teacher: Writing board, flashcards with months of the year, calendar Learner: Workbook page 111, pencil, colouring pencils

Dictionary

Months of the year: January, February, March, April, May, June, July, August, September, October, November, December

Introduce months of the year.

Concrete

Put the months of the year on the board. Ask learners to come to the front and place 4 in order. Do the same activity but start with March, April and May. Stick January and April on the board. How many months are there between January and April? How many months are there from January to November? Do more examples.

Learners must say how many days are there in each month? Answers:

January 31	February 28	March 31	April 30
May 31	June 30	July 31	August 31
September 30	October 31	November 30	December 31

116 a Months of the year continued

Learners answer the following:
Answers:
What comes before March? February
What comes after June? July

Oral question

- Name the months of the year.
- How many months is it from January to March?
- How many months are between January and July?

If it is July. Learners say how many months is it before:
Answers:
September: one month
Your birthday: learner's own answer

Homework

- Learners can can do question 4 for homework.

Reflection questions

Can learners do the following?

- Name and sequence the months of the year
- Calculate elapsed time in months

116b Days, weeks and months

Objectives

- Name and sequence the days of the week
- Sequence and name the months of the year
- Calculate the length of time and passing of time

Resources

Teacher: Writing board calendar, empty copy of calendar Learner: Workbook page 112, pencil, colouring pencils

Concrete

In groups give the learners copies of one calendar month and counters. Ask them to see how many days there are from the 3rd to the 7th. How many days are there between the 11 th and 27 th. Do more examples like this. They use their counters to put on the two given dates.

Representational

Give each learner an empty copy of a calendar or let them roughly draw it.
Give them the following information:

- The month starts on a Wednesday
- There are 31 days in this month

Using this information, they complete the whole calendar
Continue discussion of days, weeks and months

Answers:
What day is the 1st of December? Monday
What day is the 15 th of December? Monday What day is the 24th of December? Wednesday What day is the 12th of December? Friday

Learners answer the questions? Answers:
How many days are there in December? 31
How many weeks are there in December? 5 [4 weeks 3 days] How many days are there in a week? 7
When is the school closing in December? Learner's own answers What happens on the 25th of December? Christmas
a public holiday]
What happens on the 31st of December? New Year's Eve What day comes after the 31st of December? New Year's Day [a public holiday]

116 Days, weeks and months continued

Learners complete the calendar. Answer: April 2015

Sun	Mon	Tues	Wed	Thu	Fri	Sat
			1	2	0	4
5	6		8	9	10	11
12	13	14	15	0	17	18
0	20	21		23	24	0
26		28	29	30		

Homework

Find a calendar in your house. See what day December and September started with.

Reflection questions

Can learners do the following?

- Name and sequence the days of the week
- Sequence and name the months of the year
- Calculate the length of time and passing of time

117 More number patterns

Objectives

- Copy, extend and describe simple number sequences to at least 200

Resources

Teacher: Writing board, 101 to 200 number boards, counters
Learner: Workbook page 114, pencil, colouring pencils

Dictionary

Number pattern: a list of numbers that follows a certain sequence or pattern

Teach number patterns

Concrete

Learners use a 101 to 200 number board to show the following patterns, using counters:

- start at 103 and add 3 each time
- start at 105 and add 4 each time
- start at 101 and add 10 each time

Representational

Learners write down the number patterns that they have laid out on the number boards using the counters

Learners explain the pattern
Answer: A 2s pattern and a 3s pattern

101	102	103	104	105	106	107	108	109	10
111	112	113	114	115	116	117	118	119	120
12	12	12	12	12	12	127	12	12	

| 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

117 More number patterns

118 Equal sharing leading to fractions
 Content links: 121
 Grade 1 links: 29-30, 114
 Grade 3 links: 31, 92-93, 126

Objectives

- Share objects equally
- Identify and recognise a fraction of a whole number
- Solve problems involving equal sharing in context and explain own solutions

Resources

Teacher: Writing board, unifix cubes
Learner: Workbook page 116, penci

Dictionary

Sharing: It is when we take a number of objects and divide it by a number. E.g. Share 20 sweets between 5 children.
Grouping: It is when we take a number of objects and divide them up into smaller sized groups. E.g. You have 12 counters. How many groups of 4 can you make?

Teach mathematics

Concrete
 In groups of 4, give learners five unifix trains of 4 cubes each.

Ask the learners to share the train blocks between the 4 members of the group.

Representational

Ask the learners to make a drawing of what they have shared.

Each gets 5 unifix cubes.

Abstract

Tell the learners that we say:

- Each learner gets one quarter of the blocks.
- One quarter equals to five blocks
- One quarter of twenty is five. Ask them: Where did the 20 come from?

118 Equal sharing leading to fractions continued

Ask the learners to now divide the 6 chocolate slabs each between 3 children. Learners must make a drawing to show their answers.
Answer: Each child gets 2 slabs of chocolate.
Ask the learners to share the 3 cakes equally between 4 friends.
Answer: 3 cakes sliced in 4 equal parts $=12$ pieces $\div 4$ friends = pieces each (each friend gets 3 quarters of a whole cake.)

Ask the learners to colour in the chocolate as requested and then answer the questions.

Answer: One whole slab of chocolate is coloured in (or 7 and a half blocks on each slab is coloured in).
30 blocks is one quarter
24 blocks is one fiffh

Ask the learners to show one half of each picture.
Answer:
1 muffin 1 and a half muffins 2 muffins
Ask the learners to show one third of the sweets. Answer: 2 sweets

Ask the learners to show one sixth of the sweets Answer: 1 sweet

Share 11 chocolate bars among four friends so that they all get the same amount of chocolate and there is nothing left over.
Answer: Each friend will get 2 whole bars and three quarters of a bar.

Homework
Ask learners to complete Question 7 at home.

Reflection questions
Can learners do the following?

- Share objects equally
- Identify and recognise a fraction of a whole number
- Solve problems involving equal sharing in context and explain own solutions

119 Length

Objectives

- Estimate, measure, compare, order and record length using non standard measures
- Use words such as short, long, high, low, and tall to talk about length and height

Resources

Teacher: Writing board, pieces of string (of a set length - 1 metre) metre stick
Learner: Workbook page 118, pencil, colouring pencils or crayons

Dictionary

Metre: a standard unit of length used in most countries in the world

Concrete

Give learners each a piece of string (about 1 metre long). In groups get them to estimate the length (in pieces of string) of objects. Then get them to measure it with their piece of string. The groups check each others' answers.

Representational

Ask the learners to draw the objects they measured and write down their measurements.

Learners say which sides are short and which sides are long. Answers:

The long side is 6 crayons.
The short side is \qquad crayons.

Homework
Learners measure the length and width of their beds.

Reflection questions

Can learners do the following?

- Estimate, measure, compare, order and record length using nonstandard measures
- Use words such as short, long, high, low, and tall to talk about length and height

120 More heavier and lighter

Objectives

- Estimate, measure, compare, order and record mass using a scale and using non-standard measures
- Use words such as heavy and light to talk about mass

Resources

Teacher: Writing board, pictures of light and heavy objects, magazines Learner: Workbook page 120, pencil, magazines, scissors, glue

Dictionary

Mass: Mass is a measure of how much matter is in an object. This gold bar is quite small but has a mass of 1 kilogram, so it contains a lot of matter. Mass is commonly measured by how much

Introduce symmetry
Semi abstract
Learners work in groups. Give each group 6-10 pictures of objects. Ask the learners if the objects in the pictures are heavy or light. Learners must explain their answers because they might differ.

Learners look at the picture and discuss what 'heavier' and 'lighter' mean.

Learners colour the picture or pictures that show things that are lighter than the one in the green block.

Oral questions

- Name 5 heavy animals.
- Name 5 light animals.
-Why do you say they are heavy and light?

120 More heavier and lighter continued

Answer: The one on the left side is, the other is not.

Make the balance scales equal. Learners must make a drawing in the empty scale and write in a number or numbers below.
Answers:
Learners drawings in the empty scale pans of objects

Add blocks to balance the scales.$=$ $\square \square$ Answers:

Reflection questions

Can learners do the following?

- Estimate, measure, compare, order and record mass using a scale and using non-standard measures
- Use words such as heavy and light to talk about mass

121 More sharing leading to fractions

Objectives

- Share numbers or objects in equal groups
- Identify and recognise a fraction of a whole number
- Solve number problems that involve equal sharing and grouping in context and explain own solutions

Resources

Teacher: Writing board, counters
Learner: Workbook page 122, pencil, colouring pencils

Dictionary

Sharing: It is when we take a number of objects and divide it by a number. E.g. Share 12 counters between 3 children.
Grouping: It is when we take a number of objects and divide them up into smaller sized groups. E.g. You have 12 counters. How many groups of 4 can you make?
Sharing leading to fractions: The concept of sharing a whole into parts is similar to the concept of fractions of a whole. E.g. If we share 12 counters between 3 children each child will get one third of the counters. One third of twelve is a fraction of twelve $=4$.

Teach mathematics

Concrete

Give learners 12 counters. Ask them to share it between 3 friends.

Representational

Ask learners to make a drawing of what they did.

Ask them:

- How many counters were there in total?
- How many counters did each get?

Abstract

Learners look at their drawings.

- What fraction did each learner get? Each learner got one third of the 12.
- One third of 12 is 4 .

Give learners similar activities to do using different numbers and fractions.

121 More sharing leading to fractions continued

Work through the above example with the learners.

Ask the learners to look at the example you just did and share the fruit amongst the friends and then say what fraction each friend got.
Answer:
a. 15 bananas $\div 5$ friends $=3$ bananas each

Each friend got 3 fiffeenths OR 1 fifth
b. 12 oranges $\div 6$ friends $=2$ oranges each

Each friend got 2 twelfths OR 1 sixth
c. 12 pears $\div 4$ friends $=3$ pears

Each friend got 3 twelfths OR 1 quarter
d. 9 pineapples $\div 3$ friends $=3$ pineapples each Each friend got 3 ninths OR 1 third

Ask the learners to work out the word sum.
Answer: Kiki used 4 oranges

Ask learners to work out the sum.

Answer: 6
Ask the learners to work out the sum.
Answer: 12
Ask the learners to work out the sum.
Answer: 12

Homework

Ask the learners to do Question 6 at home. How many oranges are needed?
Answer: 7

Oral questions
How will you work out a word sum

Reflection questions

Can learners do the following?

- Share numbers or objects in equal groups
- Identify and recognise a fraction of a whole number
- Solve number problems that involve equal sharing and grouping in context and explain own solutions

122 Fractions

Objectives

- Use and name fractions (halves, thirds, quarters, fifths and sixths)
- Recognise fractions in diagrammatic form
- Recognise fractions equivalent to one whole
- Write fractions in words

Resources

Teacher: Writing board, counters, fraction strips made from coloured paper
Learner: Workbook page 124, pencil, coloured pens or crayons

Dictionary

Fraction: a part of a whole

Teach fractions

Concrete

Give learners some fraction
strips. Ask them to put each fraction strip one below the other as you take them from a whole down to the fraction strip divided into sixths.

Representational

Ask learners to draw and show that 2 halves make a whole.
Note that the representational drawing must be a rough drawing of what the child understands when we say two halves make a whole. Do a similar activity with thirds, quarters, fifths and sixths.

Abstract

Ask learners to write out " Two halves make a whole."

Work through the example with the learners to show them how to identify the fraction strips in the picture.

What does each strip mean? The words on the right may help you. Match the word with the strip.

Ask the learners to look at the fraction strips on the left and answer the questions. Answers:
2 halves are the same as 1 whole
4 quarters are the same as 1 whole 3 thirds are the same as 1 whole 5 fifths are the same as 1 whole

Ask the learners to colour in one part of each circle and say what they notice.

Answer:
2 halves $=1$ whole
3 thirds = 1 whole
2 halves $=1$ whole
5 fifths $=1$ whole

Ask the learners to write down which fraction of each shape is shaded by writing it in words.

1 quarter

Oral questions

Ask learners to describe in their own words what 2 halves, 3 thirds, 4 quarters and 5 fifths mean.

Draw shapes to show what the following words mean. Use squares, rectangles and circles.

Answer: learner's draw their own pictures

Homework

Ask the learners to complete Question 5 at home with assistance from their parents.
Answer: Each learner's answer will be different depending on what his or her mother or guardian would buy.

Reflection questions

Can learners do the following?

- Use and name fractions (halves, thirds, quarters, fifths and sixths)
- Recognise fractions in diagrammatic form
- Recognise fractions equivalent to one whole
- Write fractions in words

123 More fractions

Objectives

- Recognise and identify fractions in diagrammatic form
- Solve fraction word problems in context

Resources

Teacher: Writing board, fraction circles divided into halves, thirds and
quarters, paper
Learner: Workbook page 126, pencils and paper

Dictionary

Fraction: a part of a whole

Teach mathematics

Concrete

Give learners fractions circle pieces.
Ask them to make circles.
After the learners have made the circles ask them which circles are divided into halves? thirds? quarters?

Teach fractions

Representational

Give the learners some paper. Ask them to draw three circles. Note that the circles don't have to be accurate. Ask the learners to divide the first circle into halves,

the second circle into thirds and the last circle into quarters.

Abstract

Ask the learners to make a sentence for each fraction circle:

- Two halves make a whole.
- Three thirds make a whole.
- Four quarters make a whole.

Ask the learners to look at the cakes and say from which cake would they like a slice and why.

Ask the learners to draw three sliced pizzas, one in halves, one in thirds and one in quarters Answer:

123 More fractions continued

Content links: 90-91, 94a-94b, 122, 125-126 Grade 1 links: None
Grade 3 links: 7, 31, 57-59, 91-93, 122-123, 125-126

Oral questions

Ask learners to give you as many fractions as they can that are equal to a whole.

Homework
Ask the learners to complete Question 5 at home. Answer: both are same as four quarters is equal to one whole.

Reflection questions

Can learners do the following?

- Recognise and identify fractions in diagrammatic form
- Solve fraction word problems in context

124 Symmetry and shapes

Objectives

- Recognise symmetry in 2-D shapes
- Draw a line of symmetry

Resources

Teacher: Writing board, shapes to trace, paper
Learner: Workbook page 128, pencil, colouring pencils, scissors, paper

Dictionary

Symmetry: Symmetry means an exact matching of one shape to another shape on the opposite side of a line (or around a centre point). The shape or object corresponds to or matches the other shape exactly that is, it fits exactly onto itself (if you flip, slide or turn it).

Teach symmetry

Concrete

Give learners some shapes and paper to trace the shapes on. They must cut out the shapes and fold them in half.
They then open the folded shape and draw a line where the fold is. This is the 'line of symmetry'.
Ask them if they can fold the shape in another way to get a different line of symmetry.

Representational

Draw the shapes that have been cut out and draw in all the lines of symmetry using different colour.

Learners draw a line so the one side of the shape looks the same as the other side.
Answers:

124 Symmetry and shapes continued

125 Arrays and fractions

Objectives

- Recognise fractions in diagrammatic form
- Use arrays to determine the fraction of a number
- Use arrays to write addition, multiplication and division number sentences

Resources

Teacher: Writing board, counters, paper
Learner: Workbook page 130, pencil, colouring pencils or crayons, ruler

Dictionary

Array: a diagram that has rows and columns, e.g. this array has 3 rows and 4 columns.

Show the learners pictures at the top of page 130 and ask them to see how quickly they can count the shapes. Did they make use of the rows and columns in counting?

Teach arrays and fractions

Concrete
 Give learners some counters. Ask them to set out three counters in a row next to each other. Tell them this is a row.
 Ask them to set out another row underneath the first.
 We can say that we have 2 rows of 3 counters.

Representational

Ask learners to draw the 2 rows of 3 counters.
Ask the learners to show one half of the objects. One half of the objects is three.

Abstract

Show learners the following. We can write it as (every time point to the diagram you have drawn on the board):

- an addition number sentence: $3+3=6$
- a multiplication number sentence: $2 \times 3=6$
- a division number sentence: $6 \div 2=3$
- a fraction: one half of the objects is 3

125 Arrays and fractions continued

Ask the learners how many shapes there are and what one quarter of each of the shapes is. Answer:

Ask the learners how many shapes there are and what one fifth of each of the shapes is. Answer:

Ask the learners to complete the table. Answer:

$\left.$| Multiplication number
 sentence | Division number
 sentence | What is | What is |
| :--- | :--- | :--- | :--- |
| | $2 \times 3=6$
 or | $6 \div 2=3$
 or
 $6 \div 3=2$ | one half of the
 objects?
 3 | | one third of the |
| :--- |
| objects? |
| 2 | \right\rvert\,

126 A fraction of a collection of objects

Objectives

- Show a fraction of a collection of objects
- Solve fraction word problems in context and explain own solutions

Resources

Teacher: Writing board, counters
Learner: Workbook page 132, pencil, colouring pencils

beads	counters	stones	unifix cubes

Dictionary

Fraction of a collection of objects: E.g. one half of 16 objects is 8 .

Teach fractions

Concrete

Give learners 12 counters. Ask them to show you:

One half of 12	One third of 12	One quarter of 12

Ask them what is one half? one third? and one quarter of 12 counters? Representational
As the learners to draw what they did above.

Abstract

Let learners explain what they did:

- One half of 12 counters is 6 .
- One third of 12 counters is 4 .
- One quarter of 12 counters is 3 .

126 A fraction of a collection of objects cont...

127 Symmetry in patterns

Objectives

- Recognise symmetry in 2-D shapes
- Draw a line of symmetry

Resources

Teacher: Writing board
Learner: Workbook page 134, pencil, colouring pencils, paper

Dictionary

Symmetry: Symmetry means an exact matching of a shape to another shape on the opposite side of a line (or around a centre point). The shape or object corresponds to or matches the other shape or object \dagger exactly, that is, it fits exactly onto itself (if you flip, slide or turn it exactly).

Teach Symmetry

Concrete

Make a symmetrical pattern.

Learners must look at the pictures of the quilt and say what they notice.

Answer: the pattern on the quilt is symmetrical (left half to right half but not top half to bottom half]

127 Symmetry in patterns continued

Draw lines so the one side of each of these quilts looks the
same as the other side. Answers:

Homework

Learners draw their own symmetrical face pattern.

Reflection questions
Can learners do the following?

- Recognise symmetry in 2-D shapes
- Draw a line of symmetry

128 More symmetry

Objectives

- Recognise symmetry in 2-D shapes and 3-D objects
- Draw a line of symmetry

Resources

Teacher: Writing board
Learner: Workbook page 136, pencil, colouring pencils

Dictionary

Symmetry: Symmetry is when one shape becomes exactly like another if you fip, slide or turn it.
In grade two we do reflection symmetry (flip), as shown in this picture.

Teach Symmetry

Concrete

Give learners a variety of pictures from magazines.
In groups learners show the line of symmetry.
Look at the
picture and discuss it.

Oral questions

Show learners a 3-D object, such as a plastic model of an animal. What will I do to show it is symmetrical?

Homework

Learners must find 6 pictures in a magazine and show the line of symmetry.

Reflection questions

Can learners do the following?

- Recognise symmetry in 2-D shapes and 3-D objects
- Draw a line of symmetry

Teacher's notes

Published by the Department of Basic Education 222 Struben Street Pretoria
 South Africa
 (O) Department of Basic Education First published in 2015
 Author team: Blom, L., Hilton, D. and Aitchison, J.J.W Layout: Nicholson, J.
 This book may not be sold.

[^0]: Reflection questions
 Can learners do the following?

 - Add numbers 2 and 5 repeatedly
 - Multiply numbers $1-10$ by 2 and 5

[^1]: Representational
 Ask the learners to make a drawing as you are telling a story of what Maria sold. Maria has a ice cream stall. She sells ice creams for R2 each. She started off by selling one. Then she sells another one. She then sells 2 ice creams and then again another 3 . She sells 1 ice cream and then again 2.

 - How many ice creams did she sell?
 - How much money did she get for the ice creams?
 [ice creams sold: $1+1+2+3+1+2=10 \quad$ Total costs $=10 \times R 2=$ R20]

